極限的計(jì)算方法總結(jié)
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,他能夠提升我們的書面表達(dá)能力,因此我們需要回頭歸納,寫一份總結(jié)了?偨Y(jié)一般是怎么寫的呢?以下是小編幫大家整理的極限的計(jì)算方法總結(jié),歡迎閱讀,希望大家能夠喜歡。
極限的計(jì)算方法總結(jié)
1、等價(jià)無窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說一定在加減時(shí)候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記(x趨近無窮的時(shí)候還原成無窮小)。
2、洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)。首先他的使用有嚴(yán)格的使用前提!必須是X趨近而不是N趨近!(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件(還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無窮的,不可能是負(fù)無窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導(dǎo),直接用,無疑于找死!!)必須是0比0無窮大比無窮大!當(dāng)然還要注意分母不能為0。洛必達(dá)法則分為3種情況:0比0無窮比無窮時(shí)候直接用;0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無窮時(shí)候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無窮的時(shí)候,LNX趨近于0)。
3、泰勒公式(含有e的x次方的時(shí)候,尤其是含有正余弦的加減的時(shí)候要特變注意!)E的x展開sina,展開cosa,展開ln1+x,對(duì)題目簡(jiǎn)化有很好幫助。
4、面對(duì)無窮大比上無窮大形式的解決辦法,取大頭原則最大項(xiàng)除分子分母!!!看上去復(fù)雜,處理很簡(jiǎn)單!
5、無窮小于有界函數(shù)的處理辦法,面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù),可能只需要知道它的范圍結(jié)果就出來了!
6、夾逼定理(主要對(duì)付的是數(shù)列極限!)這個(gè)主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)。
8、各項(xiàng)的拆分相加(來消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡(jiǎn)函數(shù)。
9、求左右極限的方式(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時(shí)一樣的,因?yàn)闃O限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用。這兩個(gè)很重要!對(duì)第一個(gè)而言是X趨近0時(shí)候的sinx與x比值。第2個(gè)就如果x趨近無窮大,無窮小都有對(duì)有對(duì)應(yīng)的形式(第2個(gè)實(shí)際上是用于函數(shù)是1的無窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用地兩個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法,就是當(dāng)趨近于無窮大時(shí)候,不同函數(shù)趨近于無窮的速度是不一樣的!x的x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫圖也能看出速率的快慢)!!當(dāng)x趨近無窮的時(shí)候,他們的比值的極限一眼就能看出來了。
12、換元法是一種技巧,不會(huì)對(duì)單一道題目而言就只需要換元,而是換元會(huì)夾雜其中。
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒有辦法,走投無路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì),對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性!
16、直接使用求導(dǎo)數(shù)的定義來求極限,(一般都是x趨近于0時(shí)候,在分子上f(x加減某個(gè)值)加減f(x)的形式,看見了要特別注意)(當(dāng)題目中告訴你F(0)=0時(shí)候f(0)導(dǎo)數(shù)=0的時(shí)候,就是暗示你一定要用導(dǎo)數(shù)定義!
函數(shù)是表皮,函數(shù)的性質(zhì)也體現(xiàn)在積分微分中。例如他的奇偶性質(zhì)他的周期性。還有復(fù)合函數(shù)的性質(zhì):
1、奇偶性,奇函數(shù)關(guān)于原點(diǎn)對(duì)稱偶函數(shù)關(guān)于軸對(duì)稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);
2、周期性也可用在導(dǎo)數(shù)中在定積分中也有應(yīng)用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;
3、復(fù)合函數(shù)之間是自變量與應(yīng)變量互換的關(guān)系;
4、還有個(gè)單調(diào)性。(再求0點(diǎn)的時(shí)候可能用到這個(gè)性質(zhì)!(可以導(dǎo)的函數(shù)的單調(diào)性和他的導(dǎo)數(shù)正負(fù)相關(guān)):o再就是總結(jié)一下間斷點(diǎn)的問題(應(yīng)為一般函數(shù)都是連續(xù)的所以間斷點(diǎn)是對(duì)于間斷函數(shù)而言的)間斷點(diǎn)分為第一類和第二類剪斷點(diǎn)。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點(diǎn)或者左右極限存在相等但是不等于函數(shù)在這點(diǎn)的值可取的間斷點(diǎn);第二類間斷點(diǎn)是震蕩間斷點(diǎn)或者是無窮極端點(diǎn)(這也說明極限即使不存在也有可能是有界的)。
數(shù)學(xué)成績(jī)是長(zhǎng)期積累的結(jié)果,因此準(zhǔn)備時(shí)間一定要充分。首先對(duì)各個(gè)知識(shí)點(diǎn)做深入細(xì)致的分析,注意抓考點(diǎn)和重點(diǎn)題型,同時(shí)逐步進(jìn)行一些訓(xùn)練,積累解題思路,這有利于知識(shí)的消化吸收,徹底弄清楚有關(guān)知識(shí)的縱向與橫向聯(lián)系,轉(zhuǎn)化為自己真正掌握的東西。
拓展:定積分計(jì)算方法總結(jié)
一、 定積分的計(jì)算方法
1. 利用函數(shù)奇偶性
2. 利用函數(shù)周期性
3. 參考不定積分計(jì)算方法
二、 定積分與極限
1. 積和式極限
2. 利用積分中值定理或微分中值定理求極限
3. 洛必達(dá)法則
4. 等價(jià)無窮小
三、 定積分的估值及其不等式的應(yīng)用
1. 不計(jì)算積分,比較積分值的大小
1) 比較定理:若在同一區(qū)間[a,b]上,總有
f(x)>=g(x),則 >= ()dx
2) 利用被積函數(shù)所滿足的不等式比較之 a)
b) 當(dāng)0<x<兀/2時(shí),2/兀<<1
2. 估計(jì)具體函數(shù)定積分的值
積分估值定理:設(shè)f(x)在[a,b]上連續(xù),且其最大值為M,最小值為m則
M(b-a)<= <=M(b-a)
3. 具體函數(shù)的定積分不等式證法
1) 積分估值定理
2) 放縮法
3) 柯西積分不等式
≤ %
4. 抽象函數(shù)的定積分不等式的證法
1) 拉格朗日中值定理和導(dǎo)數(shù)的有界性
2) 積分中值定理
3) 常數(shù)變易法
4) 利用泰勒公式展開法
四、 不定積分計(jì)算方法
1. 湊微分法
2. 裂項(xiàng)法
3. 變量代換法
1) 三角代換
2) 根冪代換
3) 倒代換
4. 配方后積分
5. 有理化
6. 和差化積法
7. 分部積分法(反、對(duì)、冪、指、三)
8. 降冪法