數(shù)學(xué)分析章節(jié)知識點總結(jié)

時間:2022-04-25 08:39:31 總結(jié) 我要投稿

數(shù)學(xué)分析章節(jié)知識點總結(jié)

  在我們平凡的學(xué)生生涯里,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編為大家整理的數(shù)學(xué)分析章節(jié)知識點總結(jié),僅供參考,歡迎大家閱讀。

數(shù)學(xué)分析章節(jié)知識點總結(jié)

  數(shù)學(xué)分析章節(jié)知識點總結(jié)1

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

 。1)若這個條件不成立,則不是二次根式;

  (2)是一個重要的非負數(shù),即; ≥0。

  2、重要公式:

  3、積的算術(shù)平方根:

  積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

  4、二次根式的乘法法則:。

  5、二次根式比較大小的方法:

 。1)利用近似值比大小;

 。2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;

  (3)分別平方,然后比大小。

  6、商的算術(shù)平方根:,

  商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。

  7、二次根式的除法法則:

  分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>

  8、最簡二次根式:

  (1)滿足下列兩個條件的二次根式,叫做最簡二次根式,

 、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,

  ②被開方數(shù)中不含能開的盡的因數(shù)或因式;

  (2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;

 。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

  (4)二次根式計算的最后結(jié)果必須化為最簡二次根式。

  9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。

  10、二次根式的混合運算:

 。1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;

 。2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。

  2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。

  3。一元二次方程根的判別式:當ax2+bx+c=0

  (a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

  Δ>0 <=>有兩個不等的實根;

  Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;

  4。平均增長率問題————————應(yīng)用題的類型題之一(設(shè)增長率為x):

  (1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。

  (2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。

  第23章旋轉(zhuǎn)

  1、概念:

  把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

  旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

  2、旋轉(zhuǎn)的性質(zhì):

  (1)旋轉(zhuǎn)前后的兩個圖形是全等形;

  (2)兩個對應(yīng)點到旋轉(zhuǎn)中心的距離相等

 。3)兩個對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

  3、中心對稱:

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。

  這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

  4、中心對稱的性質(zhì):

 。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

 。2)關(guān)于中心對稱的兩個圖形是全等圖形。

  5、中心對稱圖形:

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

  數(shù)學(xué)分析章節(jié)知識點總結(jié)2

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。

  三角形的外心的性質(zhì):

  1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;

  2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;

  3、銳角三角形的外心在三角形內(nèi);

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

  數(shù)學(xué)分析章節(jié)知識點總結(jié)3

  1.有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而。唬5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的.結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  11.有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。

  13.有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內(nèi)容要求學(xué)生正確認識有理數(shù)的概念,在實際生活和學(xué)習數(shù)軸的基礎(chǔ)上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要。激發(fā)學(xué)生學(xué)習數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習的主體性地位。

  數(shù)學(xué)分析章節(jié)知識點總結(jié)4

  1、正數(shù)和負數(shù)的有關(guān)概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

【數(shù)學(xué)分析章節(jié)知識點總結(jié)】相關(guān)文章:

數(shù)學(xué)分析第六章知識點總結(jié)04-24

防詐騙知識點總結(jié)04-22

疫情防護知識點總結(jié)04-20

蘇教版小學(xué)數(shù)學(xué)知識點總結(jié)04-24

新高一數(shù)學(xué)知識點總結(jié)04-24

小學(xué)生的數(shù)學(xué)知識點總結(jié)04-24

停課不停學(xué)語文知識點總結(jié)(通用5篇)04-15

電梯培訓(xùn)總結(jié)04-21

師徒結(jié)對總結(jié)04-21

語文考試總結(jié)04-21