分數(shù)的基本性質(zhì)教案

時間:2023-03-21 17:09:17 教案 我要投稿

分數(shù)的基本性質(zhì)教案15篇

  作為一名無私奉獻的老師,有必要進行細致的教案準備工作,借助教案可以有效提升自己的教學能力。教案要怎么寫呢?以下是小編精心整理的分數(shù)的基本性質(zhì)教案,希望對大家有所幫助。

分數(shù)的基本性質(zhì)教案15篇

分數(shù)的基本性質(zhì)教案1

  教學目標:

  1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

  2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。

  3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。

  教學重點:

  運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  教學難點:

  聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。

  教學準備:

  多媒體課件 長方形白紙、圓片,彩色筆等。

  教學過程:

  一、 創(chuàng)設(shè)情境,激趣導入

  師:同學們,新的學期到來了,你們剛?cè)胄@時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農(nóng)場),說到開心農(nóng)場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?

  生1:四、五、六年級分的地一樣多。

  生2:……

  師:到底校長分的公平不公平,我們來做個實驗吧?

  二、動手操作,探究新知

  1、小組合作,實驗探究。

  師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

  2、匯報結(jié)果

  師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

  生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大 。

  生5:……

  3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)

  (設(shè)計意圖:這樣設(shè)計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

  4、探索分數(shù)的基本性質(zhì)。

  師:三個年級分的地一樣多,那么你們覺得、 這三個分數(shù)的大小怎么樣?

  生:相等。

  師:同學們請看這組分數(shù)有什么特點?(板書 =)

  生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。

  師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?

  生:分子分母同時乘2,……

  師:誰能用一句換來描述一下這個規(guī)律?

  生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)

  師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?

  生:分數(shù)的.分子分母同時除以相同的數(shù)。

  師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書 分數(shù)的基本性質(zhì))。

  師:結(jié)合我們的預習,對于分數(shù)的基本性質(zhì)同學們還有什么不同的意見?

  生:0除外。

  師:為什么0要除外?

  生:因為分數(shù)的分母不能為0.

  師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?

  生:同時 相同 0除外

  師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?

  生:商不變的性質(zhì)。

  師:為什么?

  生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。

  師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

  三、應(yīng)用新知,練習鞏固。

  (一) 練一練

  (二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。

  (二) 判斷(搶答)

  1、 分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。( )

  2、 把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。( )

  3、 給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。( )

  (四)測一測

  1、把和都化成分母是10而大小不變的分數(shù)。

  2、把和都化成分子是4而大小不變的分數(shù)。

  3、的分子增加2,要是分數(shù)大小不變,分母應(yīng)增加幾?

  四、總結(jié)。

  1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?

  2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

  五、作業(yè)

  練習冊2、4題

  板書設(shè)計:

  分數(shù)的基本性質(zhì)

  給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

分數(shù)的基本性質(zhì)教案2

  教學目的:

  理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

  2.理解和掌握分數(shù)的基本性質(zhì)。

  3.較好實現(xiàn)知識教育與思想教育的有效結(jié)合。

  教學難點:

  理解和掌握分數(shù)的基本性質(zhì),并運用分數(shù)的基本性質(zhì)解決問題,進一步加深分數(shù)與除法之間的關(guān)系。

  教學準備:

  板書有關(guān)習題的幻燈片。

  教學過程:

  一、復習

  1.出示

  在括號里填上適當?shù)臄?shù):

  指名說一說結(jié)果,并說一說你是根據(jù)什么填的?

  二、課堂練習:

  1.自主練習第4題。

  學生先獨立做,教師巡視,并個別指導,集體訂正。

  教師板書題目中的線段,指名讓學生板演。

  在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)

  怎樣找出相等的分數(shù)?

  讓學生自己找。集體訂正是要求學生說一說你是根據(jù)什么找出相等的分數(shù)的?

  然后要求學生在書上把這幾個相應(yīng)的點找出來。指名板演。

  2.自主練習第5題。

  先讓學生獨立做,教師巡視。個別指導。

  指名說一說你的'結(jié)果,并說一說你是根據(jù)什么填的。重點要求學生說清楚利用分數(shù)的基本性質(zhì)來進行填空。

  教師根據(jù)學生的回答選擇幾個題目進行板書。

  3.自主練習第6題。

  先讓學生獨立做。教師巡視并個別指導。注意差生中出現(xiàn)的問題。

  集體訂正。指名說一說自己的計算過程和結(jié)果。

  教師根據(jù)學生的回答選擇幾個題目進行板書。

  4.自主練習第7題。

  學生獨立做。教師要求有困難的學生分組討論,教師個別指導。

  集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據(jù)和理由。

  5.自主練習第8題。

  學生先獨立做。

  集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數(shù)的大小?哪種方法最好?

分數(shù)的基本性質(zhì)教案3

  教學目標

  1 、知識與技能:

  使學生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。

  2、過程與方法:

  學生通過觀察、比較、發(fā)現(xiàn)、歸納、應(yīng)用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學習歸納概括的方法。

  3 、情感態(tài)度與價值觀:

  激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。

  教學重難點

  1、教學重點:

  使學生理解分數(shù)的基本性質(zhì)。

  2、教學難點:

  讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。

  教學工具

  課件

  教學過程

  一、故事情境引入

  1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的xx,老二分到了這塊地的xx。老三分到了這塊的xx。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。

  你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?

  2、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

  120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4

  3、說一說:

 。1)商不變的性質(zhì)是什么?

 。2)分數(shù)與除法的關(guān)系是什么?

  4、讓學生大膽猜測:

  在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?

 。S著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。)

  二、新知探究

  1、動手操作,驗證性質(zhì)。

 。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

  你發(fā)現(xiàn)了什么?

  (2)觀察比較后引導學生得出:

  它們的分子、分母各是按照什么規(guī)律變化的?

 。3)從左往右看:

  平均分的份數(shù)和表示的份數(shù)有什么變化?

  引導學生初步小結(jié)得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

 。4)從右往左看:

  引導學生觀察明確:

  xx的分子、分母同時除以2,得到什么?

  板書:

  讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

 。5)引導學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應(yīng)。

 。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

  (7)小結(jié):

  分數(shù)的分子、分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變。這就叫做分數(shù)的基本性質(zhì)。

  2、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

  在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。

  想一想:根據(jù)分數(shù)與除法的關(guān)系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?

  3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。

  教學例2

 。ㄒ唬┌逊謹(shù)化成分母是12而大小不變的`分數(shù)。

 。1)出示例2,幫助學生理解題意。

 。2)啟發(fā):要把化成分母是12而大小不變的分數(shù),分子應(yīng)該怎樣變化?變化的根據(jù)是什么?

 。3)讓學生在書上填空,請一名學生口答。教師板書:

 。ǘ╈柟烫嵘

  1、下面算式對嗎?如果有錯,錯在哪里?為什么會這樣錯。

  2、判斷,并說明理由。

 。1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。(×)

 。2)把x的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。(√)

 。3)把x分子乘以3,分母除以3,分數(shù)的大小不變。(×)

  課后小結(jié)

  這節(jié)課我們學習了什么內(nèi)容?你們有了什么收獲呀?

  利用分數(shù)的基本性質(zhì)時,應(yīng)該明確一下幾點:

 、俜肿、分母進行的是同一種運算,只能是乘以或除以。

 、诜肿、分母乘或除以的是相同的數(shù)。而且必須是同時運算。

 、鄯肿印⒎帜竿瑫r乘或除以的數(shù)不能使0。

 、芊謹(shù)的大小是不變的。

  板書

  分數(shù)的基本性質(zhì)。

  分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。

  分數(shù)的分子、分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變。這就叫做分數(shù)的基本性質(zhì)。

分數(shù)的基本性質(zhì)教案4

  教學內(nèi)容:

  人教版《義務(wù)教育課程標準實驗教科書數(shù)學》五年級(下冊)75—78頁。

  設(shè)計思路:

  《分數(shù)的基本性質(zhì)》是人教版《義務(wù)教育課程標準實驗教科書數(shù)學》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課的教學重點是理解和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。

  教學目標:

  1.通過教學理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應(yīng)用這一規(guī)律解決簡單的實際問題。

  2.引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學生的抽象概括能力。

  3.滲透初步的辯證唯物主義思想教育,使學生收到數(shù)學思想方法的熏陶,培養(yǎng)探究的學習態(tài)度。

  教學重點:

  理解和掌握分數(shù)的基本性質(zhì)。

  教學難點:

  應(yīng)用分數(shù)的基本性質(zhì)解決實際問題。

  教學方法:

  直觀演示法、討論法等。

  學法:

  合作交流、自主探究。

  教學準備:

  每位學生準備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。

  教學過程:

  一.創(chuàng)設(shè)情景,激發(fā)興趣

 。ㄕn件出示)1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

  2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?

  ( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

  二.大膽猜想,揭示課題

  學生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?

  隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。

  三 .探索研究,驗證猜想

  1. 動手操作,驗證性質(zhì)。

  (1)學生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12

  份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。 圖(略)????引導學生觀察、思考:你發(fā)現(xiàn)了什么?

  (2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。

  ②合作交流,各抒己見。

  123③選代表全班匯報、交流,師相機板書:4812

  123(3)合作討論: 為什么相等? 4812

 、僖孕〗M為單位思考討論:(引導)它們的分子、分母各是按照什么規(guī)律變化的? ②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。

  2.分組匯報,歸納性質(zhì)。

  a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

  (根據(jù)學生回答

  b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

  (根據(jù)學生的回答)

  c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

  d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

 。4)引導學生概括出分數(shù)的基本性質(zhì),回應(yīng)猜想。

  對這句話你還有什么要補充的?(補充“零除外”)

  討論:為什么性質(zhì)中要規(guī)定“零除外”?

 。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應(yīng)的字下面點上著重號。

  師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。

  3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)

  33×263(1) ==(生: 的分子與分母沒有同時乘以2,分數(shù)的大小改變。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212

  的大小改變。) 11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)

  分數(shù)的大小改變。) 22×x2x(4)==(生:x在這里代表任意數(shù),當x=0時,分數(shù)無意義。) 55×x5x

  四.回歸書本,探源獲知

  1.瀏覽課本第75—78頁的內(nèi)容。

  2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)

  3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。

  (1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。

  (2)小組內(nèi)交流。

  (3)選代表全班交流、匯報。

  (4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!

  4.自主學習并完成例2,請二名學生說出思路。

  五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)

  1.想一想,填一填。

  33×( )988÷( )() 55×( )( )2424÷( )3

  學生口答后,要求說出是怎樣想的?

  2.在下面( )內(nèi)填上合適的數(shù)。

  要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。

  3.思維訓練(選擇你喜愛的一道題完成)

  3(1)的分子加上6,要使分數(shù)的大小不變,分母應(yīng)加上多少? 5

 。2)1/a=7/b(a、b是自然數(shù),且不為0),當a=1,2,3,4??時,b分別等于幾?

  討論:a與b之間的關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?

 。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。

  思考:分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。

  六.全課小結(jié)

  本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)

  七.布置作業(yè)

  P77—78練習十四第1、5、8題。

  教學反思

  “分數(shù)的基本性質(zhì)”是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學習的。這節(jié)課用“猜想——驗證——反思”的方式學習分數(shù)的基本性質(zhì),是學生在大問題背景下的一種研究性學習。這不僅對學生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學中創(chuàng)設(shè)學生熟悉的情景,組織學生自主活動,進行主動探究,體會知識的形成過程,體驗學習的.快樂。通過鼓勵學生大膽猜想,讓學生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學主線的“猜想”,開展自主、探究式學習,以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學以致用,發(fā)展學生思維,提高學生學習數(shù)學的興趣,感受學習數(shù)學的樂趣,培養(yǎng)學生樂于探究的人生態(tài)度。

  本節(jié)課教學設(shè)計突出的特點是學法的設(shè)計。從“創(chuàng)設(shè)情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學生自主探究、合作交流學習而設(shè)計的。通過教學總結(jié)了自己的得與失如下:

  1. 創(chuàng)設(shè)情境,可以更好地激發(fā)學生的學習興趣,學生有了這樣的學習興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!

  2.學生在操作中大膽猜想。

  新課標積極倡導學生 “主動參與、樂于探究、勤于思考”,以培養(yǎng)學生獲取知識、分析和解決問題的能力。因此我由學生的猜想入手,可以最大限度的調(diào)動學生“驗證自己猜想”的積極性和主動性,接下來通過學生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學生的主動性、積極性,從而凸顯學生在學習中的主體地位。教師在教學過程成為學生學習的引導者、支持者、服務(wù)者。同時創(chuàng)設(shè)猜想的情境,學生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學,獲得感性經(jīng)驗,進而理解所學知識,完成知識創(chuàng)造過程。并且也為學生多彩的思維、創(chuàng)設(shè)良好的平臺,由于學生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。

  3.學生在自主探索中科學驗證。

分數(shù)的基本性質(zhì)教案5

  教學目標

  1.使學生對數(shù)的整除的有關(guān)概念掌握得更加系統(tǒng)、牢固.

  2.進一步弄清各概念之間的聯(lián)系與區(qū)別.

  3.使學生對最大公約數(shù)和最小公倍數(shù)的求法掌握得更加熟練.

  4.掌握分數(shù)、小數(shù)的基本性質(zhì).

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網(wǎng)絡(luò).

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.

  教學步驟

  一、鋪墊孕伏.

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數(shù)和倍數(shù)一章的內(nèi)容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結(jié)果)

  揭示課題:在數(shù)的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.

  二、探究新知.

  (一)建立知識網(wǎng)絡(luò).【演示課件“數(shù)的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內(nèi)容.

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數(shù)能除盡除數(shù)的有( )個;被除數(shù)能整除除數(shù)的有( )個.

  教師提問:這四個算式中的被除數(shù)都能除盡除數(shù),為什么只有這一個算式中的除數(shù)能整除被除數(shù)呢?整除與除盡到底有怎樣的關(guān)系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.

  2.說出與整除關(guān)系最密切的概念,并說一說概念的內(nèi)容.

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數(shù),5是約數(shù). ( )

  因為4.6÷2=2.3,所以4.6是2的倍數(shù),2是4.6的約數(shù). ( )

  明確:約數(shù)和倍數(shù)是互相依存的,約數(shù)和倍數(shù)必須以整除為前提.

  3.教師提問:

  由一個數(shù)的倍數(shù),一個數(shù)的約數(shù)你又想到什么概念?并說一說這些概念的內(nèi)容.

  根據(jù)一個數(shù)所含約數(shù)的個數(shù)的不同,還可以得到什么概念?

  互質(zhì)數(shù)這個概念與哪個概念有關(guān)系?它們之間有怎樣的關(guān)系呢?

  互質(zhì)數(shù)這個概念與公約數(shù)有關(guān)系,公約數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù).

  4.討論互質(zhì)數(shù)與質(zhì)數(shù)之間有什么區(qū)別?

  互質(zhì)數(shù)講的是兩個數(shù)的關(guān)系,這兩個數(shù)的公約數(shù)只有1,質(zhì)數(shù)是對一個自然數(shù)而言的,它只有1和它本身兩個約數(shù).

  5.教師提問:

  如果我們把24寫成幾個質(zhì)數(shù)相乘的形式,那么這幾個質(zhì)數(shù)叫做24的什么數(shù)?

  只有什么數(shù)才能做質(zhì)因數(shù)?

  什么叫做分解質(zhì)因數(shù)?

  只有什么數(shù)才能分解質(zhì)因數(shù)?

  6.教師提問:

  誰還記得,能被2、5、3整除的數(shù)各有什么特征?

  由一個數(shù)能不能被2整除,又可以得到什么概念?

 。ǘ┍容^方法.

  1.練習:求16和24的最大公約數(shù)和最小公倍數(shù).

  2.思考:求最大公約數(shù)和最小公倍數(shù)有什么聯(lián)系和區(qū)別?

 。ㄈ┓謹(shù)、小數(shù)的基本性質(zhì).

  1.教師提問:

  分數(shù)的基本性質(zhì)是什么?

  小數(shù)的基本性質(zhì)是什么?

  2.練習.

  (1)想一想,小數(shù)點移動位置,小數(shù)大小會發(fā)生什么變化?

 。2)

 。3)下面這組數(shù)有什么特點?它們之間有什么規(guī)律?

  0.108 1.08 10.8 108 1080

  三、全課小結(jié).

  這節(jié)課我們把數(shù)的整除的有關(guān)知識進行了整理和復習,進一步弄清了各概念之間的

  聯(lián)系和區(qū)別,并且強化了對知識的運用.

  四、隨堂練習

  1.判斷下面的說法是不是正確,并說明理由.

 。1)一個數(shù)的約數(shù)都比這個數(shù)的倍數(shù)小.

 。2)1是所有自然數(shù)的公約數(shù).

  (3)所有的自然數(shù)不是質(zhì)數(shù)就是合數(shù).

  (4)所有的`自然數(shù)不是偶數(shù)就是奇數(shù).

 。5)含有約數(shù)2的數(shù)一定是偶數(shù).

  (6)所有的奇數(shù)都是質(zhì)數(shù),所有的偶數(shù)都是合數(shù).

 。7)有公約數(shù)1的兩個數(shù)叫做互質(zhì)數(shù).

  2.下面的數(shù)哪些含有約數(shù)2?哪些是3的倍數(shù)?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇數(shù)有( );偶數(shù)有( );質(zhì)數(shù)有( );合數(shù)有( );

  既是質(zhì)數(shù)又是偶數(shù)的數(shù)是( ).

  4.按要求寫出兩個互質(zhì)的數(shù).

 。1)兩個數(shù)都是質(zhì)數(shù).

 。2)兩個數(shù)都是合數(shù).

  (3)一個數(shù)是質(zhì)數(shù),一個數(shù)是合數(shù).

  5.說出下面每組數(shù)的最大公約數(shù)和最小公倍數(shù).

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作業(yè)

  1.把下面各數(shù)分解質(zhì)因數(shù).

  24 45 65 84 102 475

  2.求下面每組數(shù)的最大公約數(shù)和最小公倍數(shù).

  36和48 16、32和24 15、30和90

  六、板書設(shè)計

  數(shù)的整除分數(shù)、小數(shù)的基本性質(zhì)

  數(shù)學教案-數(shù)的整除 分數(shù)、小數(shù)的基本性質(zhì)

分數(shù)的基本性質(zhì)教案6

  教學目標

  進一步理解掌握分數(shù)基本性質(zhì)在通分中的運用,能熟練而靈活地運用通分的方法進行分數(shù)的大小比較。

  教學重難點

  旋擇適當?shù)姆椒ㄟM行分數(shù)的大小比較。

  教學準備 分數(shù)卡片

  教學過程

  一、基本練習

  學生自由練習

  互相說一個分數(shù),再通分。

  學生匯報 糾錯

  二、集中練習

  教師出示:比較下面各組分數(shù)的大小

  1、 和 和

  2、 和 和

  請同學評講

  課本練習68頁第九題 把下面分數(shù)填入合適的圈內(nèi)。

  比 大的分數(shù)有:

  比 小的分數(shù)有:

  師生討論:怎樣快速的分類?

  自由說一個比 的分數(shù)。并說出理由。

  三、解決實際問題的練習

  小明:我10步走了6米,

  小紅:我7步走了4米。

  問:誰的平均步長長一些?

  小組討論,明確解題步驟。

  小明:6÷10= =

  小紅:4÷7=

  因為 = = >

  所以 >

  答:小明的`平均步長長一些。

  四、拓展練習:

  下面3名小棋手某一天訓練的成績統(tǒng)計

  總盤數(shù)贏的盤數(shù)贏的盤數(shù)占總數(shù)的幾分之幾

  張129

  李107

  趙138

  誰的成績最好?

  小組合作集體解決題型。

  三個分數(shù)的大小比較,怎樣比較較好?

  五、課堂作業(yè)

  68頁第11題

分數(shù)的基本性質(zhì)教案7

  設(shè)計說明

  1.注重情境創(chuàng)設(shè),激發(fā)學生的學習興趣。

  偉大的科學家愛因斯坦說過:“興趣是最好的老師。”也就是說一個人一旦對某個事物產(chǎn)生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產(chǎn)生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設(shè)一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設(shè)疑,導入新課。

  2.突出學生的主體地位,在實踐操作中掌握新知。

  學生是學習的主體,教師要時刻關(guān)注學生的主體地位。在探究分數(shù)的基本性質(zhì)的過程中,給予學生充分的學習空間,讓學生自主探究,經(jīng)歷折一折、畫一畫、剪一剪、比一比的過程,得出分數(shù)的基本性質(zhì),體驗成功的快樂。

  課前準備

  教師準備 PPT課件

  學生準備 若干張同樣大小的圓形紙片 彩筆

  教學過程

  ⊙故事引入

  1.教師講故事。

  師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們?nèi)值艹,媽媽先把第一張餅平均分成兩份,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份!眿寢層贮c點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。

  大毛、二毛、三毛都滿意地笑了,媽媽也笑了。

  設(shè)計意圖:借助故事給學生創(chuàng)設(shè)一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。

  2.探究驗證。

  (1)提出猜想。

  師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?

  生:同樣多。

  師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數(shù)學家,一起來驗證這個猜想吧!

  (2)驗證猜想。

  請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。

 、僬垡徽郏喊衙繌垐A形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。

 、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的.1份、2份、4份涂上顏色,并用分數(shù)表示出來。

 、奂粢患簦喊褕A形紙片中的涂色部分剪下來。

 、鼙纫槐龋喊鸭粝碌耐可糠种丿B,比一比。

  師:通過比較,結(jié)果是怎樣的?

  生:同樣大。

  設(shè)計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉(zhuǎn)化為動態(tài)的求知過程,經(jīng)歷分數(shù)的基本性質(zhì)的形成過程。

  3.揭示課題。

  師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內(nèi)容:分數(shù)的基本性質(zhì)。(師板書,生齊讀課題)

  ⊙探究新知

  1.觀察比較,探究規(guī)律。

  (1)請同學們觀察,比較三個分數(shù)的大小。

  師:三兄弟分得的餅同樣多,那么這三個分數(shù)的大小是怎樣的呢?(相等)

  師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。

  (2)請同學們仔細觀察,這三個分數(shù)什么變了,什么沒變?(分子、分母變了,大小沒變)

  師:這三個分數(shù)的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?

  (課件出示:比較它們的分子和分母)

 、購淖笸铱,是按照什么規(guī)律變化的?

 、趶挠彝罂矗质前凑帐裁匆(guī)律變化的?小組內(nèi)討論,交流一下你們的發(fā)現(xiàn)。

  師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變)

  師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數(shù)的分子和分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變]

  師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變]

  師:請同學們思考一下,這個數(shù)為什么不能是0?同桌之間討論。(因為在分數(shù)中,分母不能為0,并且在除法里,0不能作除數(shù),所以這個數(shù)不能是0)

  (3)教師總結(jié)分數(shù)的基本性質(zhì)。(板書)

分數(shù)的基本性質(zhì)教案8

  分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  根據(jù)分數(shù)的基本性質(zhì),我們能夠把任何一個分數(shù)變換成另一個分數(shù)單位的等值分數(shù)。也就是說,分數(shù)基本性質(zhì)解決了分數(shù)單位的換算問題。統(tǒng)一了分數(shù)單位,異分母的分數(shù)才能進行加減運算。

  例如,+=+

  =×2+

 。健粒2+1)

  =。

  在分數(shù)的運算中,把異分母分數(shù)變成同分母的分數(shù)的過程,叫通分;通分是把較小的分數(shù)單位變換為較大的分數(shù)單位。在分數(shù)的運算中,有時也需要把較大的分數(shù)單位變換成較小的分數(shù)單位,這個過程叫約分。

  例如,×=

 。

 。健

  通分和約分的理論根據(jù)都是分數(shù)的基本性質(zhì)。

  分數(shù)基本性質(zhì)還是分數(shù)集合分類的一個標準。根據(jù)分數(shù)基本性質(zhì),可以把分數(shù)集合中所有等值分數(shù)都歸為一類,于是分數(shù)集合就被分成無數(shù)個這樣的等值分數(shù)的類別。如,上述和屬于同一類,和屬于同一類。

  在分數(shù)集合的每一個等值分數(shù)的類別中,都有且只有一個最簡分數(shù)。所謂最簡分數(shù),就是它的分子和分母除1以外再也沒有其他的公因數(shù)了。如,上述、都分別是它們所在的等值分數(shù)類別中的最簡分數(shù)。

  在分數(shù)集合中,最簡分數(shù)就是每一個等值分數(shù)類別的代表。確定這一個代表的重要意義是,確保分數(shù)運算與自然數(shù)運算一樣,運算結(jié)果具有單值性(唯一性)。這就是為什么要對運算結(jié)果進行約分,直到最簡分數(shù)為止。

  小數(shù)單位0.1、0.01、......分別與分數(shù)單位、、......是等價的,小數(shù)是特殊的分數(shù)。小數(shù)與分數(shù)可以互相轉(zhuǎn)化。

  例如,把0.25化為分數(shù)。

  方法1:(根據(jù)小數(shù)的意義)

  0.25=0.01×25

  =×25

 。

  =。

  方法2:(把小數(shù)視為分母是1的分數(shù))

  0.25=

  =

 。

 。健

  方法1和方法2中,每一步都是可逆的,所以如果把化為小數(shù),也有與上述對應(yīng)的兩種方法。此外,把分數(shù)化為小數(shù)還可以直接利用除法,即=1÷4=0.25。

  在上述兩種方法中,分數(shù)的基本性質(zhì)都發(fā)揮了作用。

  分數(shù)基本性質(zhì)與商不變規(guī)律,事實上是從不同的形式表示相同的規(guī)律。本質(zhì)相同而形式不同,主要是適應(yīng)不同的情境。所以,從商不變規(guī)律的重要性亦可反觀分數(shù)基本性質(zhì)的重要性。

  遇到小數(shù)除法,根據(jù)商不變規(guī)律可以轉(zhuǎn)化為整數(shù)除法,從而以整數(shù)除法為基礎(chǔ)把把小數(shù)除法與整數(shù)除法統(tǒng)一起來。

  例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;

  或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.

  如果把2.4÷0.4寫成分數(shù)形式,也未嘗不可,不過將出現(xiàn)被稱為“繁分數(shù)”的分數(shù)形式。把繁分數(shù)化為簡單分數(shù),也必須根據(jù)分數(shù)的基本性質(zhì)。

  例如,=

 。

 。6.

  有了“商不變規(guī)律”,在算式的等值變形中可以避免出現(xiàn)繁分數(shù)的形式,所以繁分數(shù)的概念很早以前就已經(jīng)不出現(xiàn)在小數(shù)數(shù)學的教科書中了;即使出現(xiàn)了“繁分數(shù)”,我們就把它當作一般分數(shù)來對待,也不必專門為之增加一個新名稱。

  當溝通了分數(shù)、除法與比的本質(zhì)的聯(lián)系后,我們可以想到,其實比也有一個與分數(shù)基本性質(zhì)等價的基本性質(zhì)。即比的前項與后項都乘或除以相同的數(shù)(0除外),比值不變。

  根據(jù)比的這一基本性質(zhì),比可以進行等值變形。在比的實際應(yīng)用中,如果不掌握比的等值變形,就會寸步難行。不過,比的等值變形不能局限于比的化簡。在筆者《分數(shù)認識的三次深化與發(fā)展》中,已經(jīng)說明把按比分配轉(zhuǎn)化為分數(shù)問題來解決的時候,事實上要把整數(shù)比轉(zhuǎn)化為分數(shù)比的形式,而且這些表示部分與整體關(guān)系的分數(shù)的總和還必須等于1(即部分之和等于整體)。

  下面再看兩個實例,進一步體會比的必要性。

  例1一種混凝土是由水泥、沙子和石子混合成的,其中水泥與沙子的比是1︰1.5,沙子與石子的比是1︰。這種混凝土中水泥、沙子和石子的'比是多少?

  問題中兩個已知的比,分別表示混凝土中兩個成分的比,而且這兩個比的基準不一致。解決這個問題的關(guān)鍵是統(tǒng)一比的基準。因為這兩個比中都含有沙子的成分,所以選擇沙子為統(tǒng)一的基準,就能把兩個比統(tǒng)一起來。

  解:水泥︰沙子=1︰1.5=10︰15=︰1;

  沙子︰石子=1︰。

  所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。

  當某種混合物的成分多于兩種,并要表示它各種成分之間的倍比關(guān)系時,比的表示形式就得天獨厚志顯示出它的優(yōu)越性。

  例2(阿拉伯民間流傳的數(shù)學故事)有一位阿拉伯老人,生前養(yǎng)有11匹馬,他去世前立下遺囑:大兒子、二兒子、小兒子分別繼承遺產(chǎn)的、、。兒子們想來想去沒法分:他們所得的都不是整數(shù),即分別為、和,總不能把一匹馬割成幾塊來分吧?聰明的鄰居牽來了自己的1匹馬,對他們說:“你們看,現(xiàn)在有12匹馬了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,還剩一匹我照舊牽回家去!边@樣把分的問題解決了。

  學習比的知識,我們都會變得和阿拉伯兄弟的那個鄰居一樣聰明。這個知識就是比的等值變形。

  解:︰︰=(×12)︰(×12)︰(×12)

 。6︰3︰2,

  而且6+3+2=11。

  所以,老大、老二、老三分別分得的馬分別是6匹、3匹和2匹。

  這位阿拉伯鄰居一定是一名優(yōu)秀教師,他善于把上述抽象的演算過程直觀地表現(xiàn)出來。他牽來自己的一匹馬,湊成12匹馬,這個12恰是這三個分數(shù)分母的最小公倍數(shù),這個數(shù)也是把這三個分數(shù)的比化為整數(shù)比的關(guān)鍵所在。

  綜上,可以看到分數(shù)基本性質(zhì)的重要地位和作用:

 、笔前逊謹(shù)從一個分數(shù)單位換算為另一個分數(shù)單位的基礎(chǔ);

 、彩欠謹(shù)的通分與約分的根據(jù),也是一些算式等值變形的重要途徑之一;

 、呈欠謹(shù)集合被分成等值分數(shù)類別的分類標準,在每一個類別中都有且只有一個最簡分數(shù),使得分數(shù)運算的結(jié)果具有唯一性。

分數(shù)的基本性質(zhì)教案9

  教學目的

  1.使學生理解和掌握分數(shù)的基本性質(zhì).

  2.培養(yǎng)學生觀察、思考、動手操作和自學能力.

  教學過程

  一、導入新課.

  故事引入:中秋節(jié),媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).

  分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)

  到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.

  二、新課.

  1.實際操作列等式證實兩組分數(shù),每組分數(shù)大小相等.

 。1)教師講解:請同學們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的

 。ò鍟 )

 。2)教師提問:比較一下陰影部分的大小,結(jié)果怎樣?

  陰影部分相等,說明這三個分數(shù)怎樣?

 。S著學生回答老師將三個分數(shù)用“=”連接)

 。3)教師拿出畫著三條數(shù)軸的小黑板,講:誰能在三條數(shù)軸上標出 ?

  (4)教師提問:這三個分數(shù)在數(shù)軸上所表示的長度怎樣?這又說明了什么?

 。S著學生回答老師在三個分數(shù)間用“=”連接)

  2.初步概括分數(shù)基本性質(zhì).

 。1)觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?

 。2)同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變.

  板書:

  (3)誰能用一句話把這個變化規(guī)律敘述出來?

  板書:分數(shù)的`分子、分母都乘上同一個數(shù),分數(shù)大小不變.

 。4)從左到右觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?

  板書:

  (5)問:誰能用一句話把這個變化規(guī)律敘述出來?

  誰能用一句話把這兩個變化規(guī)律敘述出來?

 。ò鍟夯虺裕

  3.完整分數(shù)基本性質(zhì).

  填空:

  教師追問:第三題( )里可以填多少個數(shù)?第4題呢?

  為什么3、4題( )里可以填無數(shù)個數(shù)?

  ( )里填任何數(shù)都行嗎?哪個數(shù)不行?(板書:零除外)

  這里為什么必須“零除外”?

  教師小結(jié):我們總結(jié)的分數(shù)的這個變化規(guī)律就是“分數(shù)的基本性質(zhì).

 。ò鍟n題:分數(shù)基本性質(zhì))

  4.深入理解分數(shù)基本性質(zhì).

  教師提問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?

  為什么“都”和“相同”很重要?

  為什么“分數(shù)大小不變”也很重要?

  為什么“零除外”也很重要?

  三、課堂練習.

  1.用直線把相等的分數(shù)連接起來.

  2.把下列分數(shù)按要求分類.

  和 相等的分數(shù):

  和 相等的分數(shù):

  3.判斷下列各題的對錯,并說明理由.

  4.填空并說出理由.

  5.集體練習.

  四、照應(yīng)課前談話.

  問:現(xiàn)在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?

  板書:

  五、課堂小結(jié).

  這節(jié)課你有什么收獲?

  六、布置作業(yè).

  1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.

  2.在下面的括號里填上適當?shù)臄?shù).

分數(shù)的基本性質(zhì)教案10

  教學目標

  1、進一步理解分數(shù)基本性質(zhì)的意義,掌握約分的方法。

  2、促進學生初步形成約分的一般技能技巧,約分(約成最簡分數(shù))的正確率90%。

  教學重難點約成最簡分數(shù)

  教學準備:分數(shù)卡片口算卡片

  教學過程

  一、自主回顧

  回顧一下對約分的理解情況

  突出三點:用分子分母的公因數(shù)同時去除;約分的形式;約成最簡分數(shù)。

  師:什么是最簡分數(shù)?

  說一說。

  二、鞏固練習

  師分數(shù)卡片判斷

  1、找朋友:找出和相等的分數(shù)。(七個小矮人身上的分數(shù)分別是下列分數(shù))

  你是怎樣尋到的'?說說自己的理由好么?

  2、能用不同的分數(shù)表示下面各題的商嗎?

  練習十一第8題

  師:我們在剛剛學習分數(shù)和除法的關(guān)系時,只會用表示2÷8,現(xiàn)在我們還可以用來表示?矗覀兊倪M步啊,這就是學習的魅力。

  師:你能寫出不同的除法算式嗎?

 。剑ǎ拢ǎ剑ǎ拢ǎ

  你能說出幾個除法的算式?

  這些算式之間有什么聯(lián)系?

  3、快樂學習超市

  超市畫面快樂套餐1快樂套餐2

  快樂套餐1:比一比○○0.4

  計算并化簡+=-=

  在()填上最簡分數(shù)20分=()時

  快樂套餐2、3同上。

 。ǚ纸M練習小組代表匯報整合了練習十一10至14題)

  4、集中練習

  把0.5化成分數(shù)問問自己這個分數(shù)是最簡分數(shù)嗎?你會把它化成最簡分數(shù)嗎?

  分母是10的最簡分數(shù)有幾個?

  請你提出一個類似的問題。

  課堂作業(yè)

  練習十一第9題,12、13、14題各自選2個

  課后練習:完成練習冊上的相應(yīng)練習。

分數(shù)的基本性質(zhì)教案11

  教材簡析:

  分數(shù)的基本性質(zhì)是以分數(shù)大小相等這一概念為基礎(chǔ)的。因為分數(shù)與整數(shù)不同,兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。教學時,可引導學生觀察一組相等分數(shù)的分子、分母是按什么規(guī)律變化的,再結(jié)合分數(shù)的意義歸納出分數(shù)的基本性質(zhì)。由于分數(shù)和整數(shù)除法存在著內(nèi)在聯(lián)系,所以分數(shù)的基本性質(zhì)也可以利用整數(shù)除法中商不變的性質(zhì)來說明。

  設(shè)計理念:

  分數(shù)的基本性質(zhì)是約分和通分的基礎(chǔ),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。因此我把學生的學習定位在自主建構(gòu)知識的基礎(chǔ)上,建立了猜想試驗分析合情推理探究創(chuàng)造的教學模式。

  在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結(jié)論。當學生得出分數(shù)的分子、分母都乘或除以同一個數(shù),分數(shù)的大小不變之后,再結(jié)合商不變的性質(zhì)深入理解,把知識融會貫通。整個教學過程注重讓學生經(jīng)歷了探索知識的過程,使學生知道這些知識是如何被發(fā)現(xiàn)的,結(jié)論是如何獲得的,體現(xiàn)了方法比知識更重要這一新的教學價值觀,構(gòu)建了新的教學模式。

  《數(shù)學課程標準》指出:學生是學習數(shù)學的主人,教師是數(shù)學學習的組織者、引導者與合作者。這就要求我們在教學活動中應(yīng)該為學生提供大量數(shù)學活動的機會,讓學生去探索、交流、發(fā)現(xiàn),從而真正落實學生的主體地位。

  教學目標:

  1、使學生理解和掌握分數(shù)的'基本性質(zhì),能應(yīng)用性質(zhì)解決一些簡單問題.

  2、培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.

  3、滲透形式與實質(zhì)的辯證唯物主義觀點,使學生受到思想教育.

  教學重點:

  使學生理解和掌握分數(shù)的基本性質(zhì),培養(yǎng)學生的抽象、概括的能力。

  教學難點:

  讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。

  教具準備:

  每生三張正方形紙

  教學方法:

  演示法、觀察法、討論法、交流法。

分數(shù)的基本性質(zhì)教案12

  一、 教材

  根據(jù)課程標準的要求,基于對教學內(nèi)容的把握,本課時我確定的教學目標為:

  1.理解和掌握分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  2.通過猜想、驗證、歸納、總結(jié)等活動,經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。

  3.在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣。我確定本目標的依據(jù)有三點:

  一是基于對課程標準的理解。

  《義務(wù)教育數(shù)學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。

  二是基于對教材的認識。

  《分數(shù)的基本性質(zhì)》是在學生學習了分數(shù)的意義、分數(shù)與除法的關(guān)系、商不變性質(zhì)等知識的基礎(chǔ)上進行教學的,它是以后學習約分、通分的依據(jù),而約分和通分則是分數(shù)四則混合運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。

  三是基于對學情的認識。

  作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數(shù)學味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設(shè)情境,在情景中提煉出等式,最終形成性質(zhì)。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結(jié)論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經(jīng)歷定律由特殊到一般的歸納推理過程,在這個過程中積累數(shù)學經(jīng)驗、滲透數(shù)學思想、掌握數(shù)學方法。

  據(jù)此,

  我將教學重點確定為:通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的.探究過程。教學難點確定:理解和掌握分數(shù)的基本性質(zhì)。

  二、教法

  課程標準指出教師要關(guān)注已有的知識經(jīng)驗及認知水平,發(fā)揮組織者、引導者、合作者的作用。本節(jié)課我綜合采用了引導發(fā)現(xiàn)法、啟發(fā)式教學法,直觀演示法,組織學生經(jīng)歷實驗、猜測、驗證、得出結(jié)論的過程。

  三、說學法

  學生是學習的主體,學生的學習活動應(yīng)該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。

  四、說教學過程

  本著讓學生

  “主動參與、樂于探究、學有所得”的理念,結(jié)合五年級學生的認知水平和年齡特點,結(jié)合教材的編排意圖和學情特點,我設(shè)計了如下教學環(huán)節(jié):1. 聯(lián)系舊知,質(zhì)疑引思。 2.自主操作,驗證猜想 3.知識應(yīng)用,鞏固提高4.回顧總結(jié),完善認知。

  環(huán)節(jié)一:聯(lián)系舊知,質(zhì)疑引思。

  “疑是思之始,學之端!彼伎歼@樣一連串的問題,目的是喚醒學生已有的知識經(jīng)驗;迅速地點燃孩子們求知欲望;引發(fā)學生的數(shù)學思考,為主動探究新知識積聚動力。

  環(huán)節(jié)二:操作體驗,概括規(guī)律

  1.觀察發(fā)現(xiàn),提出猜想。

  通過找與1/2相等的分數(shù),思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想

  2.舉例操作,驗證猜想。

  課標指出“學生應(yīng)當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數(shù)的大小不變”設(shè)定為研究的關(guān)鍵點,然后圍繞這一關(guān)鍵點讓學生展開了操作、感悟、分析、推理等一系列的數(shù)學活動,引導學生通過比較全面的大量的例子來驗證結(jié)論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學生試著用數(shù)學的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學生好學善思的良好品質(zhì)。

  3.概括性質(zhì),深化理解

  通過觀察算式,經(jīng)歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數(shù)的基本性質(zhì)。

  4.運用規(guī)律,完成例2

  嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。

  環(huán)節(jié)三:知識應(yīng)用,鞏固提高

  在有層次的練習過程中,形成技能,發(fā)展學生的智力,達成本節(jié)課的教學目標,突出重點,突破難點。本節(jié)課,我設(shè)計了兩個層次的練習。一是點對點的基礎(chǔ)練習,二是靈活運用所學知識解決生活中實際問題。

  環(huán)節(jié)四:回顧總結(jié),完善認知

  通過回顧,梳理所學的知識,提煉數(shù)學方法,聯(lián)系新舊知識,使學生的認知結(jié)構(gòu)得到補充和完善。

  有人說的好,教育是一門永無止境的藝術(shù),我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。

分數(shù)的基本性質(zhì)教案13

  教學目標:1,使同學理解分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  2,培養(yǎng)同學發(fā)現(xiàn)問題和解決問題的能力。滲透"事物之間是相互聯(lián)系"的辯證唯物主義觀點。

  教學重點:掌握分數(shù)的基本的性質(zhì),能運用分數(shù)的基本性質(zhì)解決有關(guān)的問題。

  教學難點:理解分數(shù)的`基本的性質(zhì)。

  教學課型:新授課

  具準備:課件

  教學過程:

  一,復習鋪墊,準備遷移 [課件1]

  1,120÷30的商是多少 被除數(shù)和除數(shù)都擴大3倍,商是多少被除數(shù)和除數(shù)都縮小10倍呢

  2,比較下列每組數(shù)的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分數(shù)改寫成兩個數(shù)相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,發(fā)展智能

  1,同學操作:將手中的紙圓片平均分成若干份。

  2,反饋。

  (1)提問:A,若要求剪下其中的一半,想想剪下的份數(shù)各自占圓的幾分之幾

  B,雖然每個同學所剪的份數(shù)不同,但它們之間大小關(guān)系怎樣

  板書: 1/2=2/4=3/6

  C,觀察一下:這些分數(shù)的分子,分母變化有什么規(guī)律

 。2)引導同學概括出分數(shù)的基本性質(zhì),并與前面的猜測相回應(yīng)。

  (3)小結(jié):這里的"相同的數(shù)",是不是任何數(shù)都可以呢

 。愠猓

  板書:分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。

  3,分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

  提問:在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。想一想:根據(jù)分數(shù)與除法的關(guān)系以和整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎

  4,鞏固認識。

  P109 。1

  (2)說數(shù)接龍。

  5/6=5+5/( )……

  三,運用延伸,深化概念

  1,要求大小不變。[課件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分數(shù)中哪兩個分數(shù)相等 [課件3]

  3/4 21/32 15/20 1/5 4/20

  習后提問:A,依據(jù)是什么

  B,3/4和1/5哪個大 你是怎么比較出來的

  C,那么,從中你又有什么新發(fā)現(xiàn) 你的新發(fā)現(xiàn)是什么

  四,全課總結(jié)

  提問: A,這節(jié)課你學習了什么

  B,運用分數(shù)的性質(zhì),你能做什么

  C,本節(jié)課你還有哪些疑問 你還想從哪些方面去探索分數(shù)

  的知識呢

  五,家作

  P109 。3,5,6

  板書設(shè)計: 分數(shù)的基本性質(zhì)

  1/2=2/4=3/6

  分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)的基本性質(zhì)教案14

  教學目的:

  1、理解和掌握分數(shù)的基本性質(zhì)。

  2、理解分數(shù)的基本性質(zhì)與商不變規(guī)律的關(guān)系。

  3、培養(yǎng)教學內(nèi)容:小學數(shù)學第十冊,分數(shù)的基本性質(zhì)教材第107~108頁。學生觀察、比較,抽象、概括的能力及初步的邏輯推理能力。

  4、應(yīng)用分數(shù)的基本性質(zhì)解決簡單實際問題。

  5、正確認識、處理變與不變的的辨證關(guān)系。

  教學重點:

  掌握分數(shù)的基本性質(zhì)。

  教學難點:

  抽象概括分數(shù)的基本性質(zhì)。

  教具學具準備:

  多媒體及課件一套、學生每人三張同樣大小的紙條、彩筆。

  教學步驟:

  一、1、復習舊知

  除法與分數(shù)之間有什么聯(lián)系?

  被除數(shù)÷除數(shù)=被除數(shù)

  除數(shù)

  1)、你能用分數(shù)表示下面各題的商嗎?

  1÷2=()3÷6=()5÷10=()4÷8=()

  2)、根據(jù)400÷25=16在□里填數(shù):

 。400×4)÷(25×4)=□

  根據(jù)360÷90=4在□里填數(shù):

 。360÷□)÷(90÷10)=4

  (2)你是怎樣想的?(回憶除法中商不變性質(zhì))

  商不變的性質(zhì)內(nèi)容是什么?

  3)、引入:剛才我們復習了除法中商不變的性質(zhì),在分數(shù)中有沒有類似的性質(zhì)呢?

  2、激趣引入:和尚分餅

  從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦,不,是三個小和尚。小和尚們很喜歡吃老和尚做的餅,有一天,老和尚做了三個同樣大小的餅,還沒給,小和尚們就叫開了,小和尚說:“我要一塊!崩虾蜕卸挍]說,就把一塊餅平均分成二塊,取其中的一塊給了小和尚。高和尚說:“我要二塊!崩虾蜕杏职训诙䦃K餅平均分成四塊,取其中的兩塊給了高和尚,胖和尚搶著說:“我不要多了,我只要三塊。”老和尚又把第三塊餅平均分成六塊,取其中的三塊給了胖和尚。老和尚一一滿滿足了小和尚們的要求,同學們,誰會用一個數(shù)來表示三個和尚分得的餅數(shù)?板書:1/22/43/6

  你們猜猜哪個和尚分的餅多?板書:1/4=2/8=4/16

  這幾個分數(shù)真的相等嗎?讓我們做個實驗來證明。

  3、操作感知:

 。1)請同學們拿出三張大小相同的長方形紙條。

  通過實驗、觀察、分析、討論

 、侔训谝粡埣垪l平均分成2份,其中1份涂上顏色并用分數(shù)表示出來;

 、诎训诙䦶埣垪l平均分成4份,其中2份涂上顏色并用分數(shù)表示出來;

 、郯训谌龔埣垪l平均分成6份,其中3份涂上顏色并用分數(shù)表示出來

  然后看涂上顏色的部分是不是一樣大。這說明了什么?

  引導:聰明的老和尚是用什么辦法來既滿足小和尚們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)

  這三個分數(shù)它們之間有什么變化規(guī)律嗎?下面我們就來研究這個變化規(guī)律。

  二、比較歸納揭示規(guī)律

  比較這三個分數(shù)分子和分母,它們各是按照什么規(guī)律變化的?:

  1、說說這三個分數(shù)的意義。

  2、總結(jié)規(guī)律:

 。1)從左往右觀察:

  a、觀察手中第一、第二張紙條。

  發(fā)現(xiàn):1/2是把單位“1”平均分成2份,表示其中的1份。如果把分的份數(shù)和表示的份數(shù)都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

  b、再讓學生說說從1/2到3/6,分數(shù)的分子和分母又是按什么規(guī)律變化的?

  板書:1/2=1×3/2×3=3/6

  c、根據(jù)上面的分析,你能得出什么結(jié)論?引導學生說出:分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。

 。2)引導學生觀察、討論:

  從右往左看,3/6到1/2,2/4到1/2,分數(shù)的分子和分母是按什么規(guī)律變化的?從中你能得出什么結(jié)論?

  學生邊回答邊板書:3/6=3÷3/6÷3=1/2

  2/4=2÷2/4÷2=1/2

  并得出結(jié)論:分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。

  3、抽象概括歸納性質(zhì)

  (1)引導學生把剛才出示的.兩條規(guī)律合并成一條規(guī)律。指出這就是“分數(shù)的基本性質(zhì)”。

 。2)齊讀書上的結(jié)論,比一比少了些什么?討論:為什么性質(zhì)中要規(guī)定“零除外”齊讀。

  分母不能是0,所以分數(shù)的分子、分母不能同時乘以0;又因為除法里,零不能作除數(shù),所以分數(shù)的分子、分母也不能同時除以0。

  三、出示例2

  1、把2/3和10/24化成分母是12而大小不變的分數(shù)。

  引導學生思考:把3/4和15/24化成分母是12而大小不變的分數(shù),分子要不要發(fā)生變化,變化的依據(jù)是什么?

  學生獨立完成。

  四、多層練習鞏固深化

  1、鞏固練習:

  口答

  1/5=()/159/18=()/6

  2/3=()/1210/24=()/12

  6/10=()/20=3/()=18/()

 。病⑸罨毩暎

  下面每組中的兩個分數(shù)相等嗎?為什么?

  3/5和6/101/15和1/5

  3、應(yīng)用練習:

  判斷:

 。1)分數(shù)的分子和分母都同時乘以或者除以相同的數(shù),分數(shù)的大小不變。()

 。2)一個分數(shù)的分子擴大10倍,要使分數(shù)的大小不變,分母也要擴大10倍。()

 。3)一個分數(shù)的分母除以5,分子也除以5,分數(shù)的大小不變。()

  4、發(fā)散練習:你能寫出和4/6相等的分數(shù)嗎?

  在一分鐘內(nèi)比一比誰寫得多,讓寫的最多的同學報出來,給予表揚。

 。怠⒂螒颍赫堈艺椅业暮门笥

  五、全課總結(jié)

  提問:我們這節(jié)課學習了什么內(nèi)容?分數(shù)的基本性質(zhì)是什么?

  通過今天的學習,你認為學習分數(shù)的基本性質(zhì)有什么作用?

分數(shù)的基本性質(zhì)教案15

  教學目標:

  1、理解分數(shù)的基本性質(zhì)。

  2、初步掌握分數(shù)的基本性質(zhì)。

  3、培養(yǎng)學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。

  教學重點:理解與掌握分數(shù)的基本性質(zhì)。 教材分析:分數(shù)的基本性質(zhì)是在學習了商不變性質(zhì)及分數(shù)與除法的關(guān)系的基礎(chǔ)上進行教學的。它是今后學習約分和通分的依據(jù),是分數(shù)四則運算的重要基礎(chǔ)知識,是學生準確進行分數(shù)加減法計算的依據(jù)。

  設(shè)計意圖:通過復習商不變的性質(zhì)和分數(shù)與出發(fā)的關(guān)系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數(shù)基本性質(zhì)與商不變性質(zhì)打下了基礎(chǔ)。

  在新知的引入,我設(shè)計了讓學生動手操作的方法(折紙、涂色),調(diào)動學生的多種感觀充分感知數(shù)學事實,來引導學生觀察、思考,激發(fā)學生的求知欲,調(diào)動學生學習的積極性。

  通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數(shù)學概念轉(zhuǎn)變?yōu)閷W生易于理解概念,激發(fā)學生的學習興趣,結(jié)合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數(shù)變化的規(guī)律,即分于分母都乘以或除以相同的數(shù),分數(shù)和大小不變。 通過電腦出示的畫象的逐步引入,使學生加深對分數(shù)基本性質(zhì)的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發(fā)展學生的邏輯思維。

  在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。

  第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎(chǔ)上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數(shù)基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發(fā)展學生的智能。在聯(lián)系的過程中,也采用了電腦與投影及錄音機的有機結(jié)合有效地提高了課堂效率。

  教學過程: 復習舊知,導入新課 被除數(shù) 除數(shù)= 根據(jù)120 30=3 填數(shù) (120 3) (40 3)=( ) (120 ___) (40 10)=4 (復習商不變性質(zhì)) 驗證并結(jié)實課題 學生用準備好的兩張紙,進行動手操作。(感知 = ) 教師再演示,引導學生發(fā)現(xiàn) 、 、 、三個分數(shù)的大小相等。觀察什么在變,什么不變。把單位1平均分的分數(shù)和取的分數(shù),也就是分數(shù)的分子和分母發(fā)生了變化,而分數(shù)的大小不便,為什么分數(shù)的分子、分母在變,而分數(shù)的大小不變?它們的變化規(guī)律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發(fā)引導,揭示規(guī)律 (1) = = = =

  從左往右觀察,探索分數(shù)的分子、分母的變化規(guī)律,引導學生去思考。討論得出:分數(shù)的分子墳墓都乘以相同的數(shù),分數(shù)的大小不變。 ,分數(shù)的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規(guī)律:分子、分母都除以相同的數(shù),分數(shù)的'大小不變。 歸納性質(zhì) 誰能把上面的分數(shù)的分子分母都乘以或除以相同的數(shù)。兩句話合成一句話來說。分數(shù)的分子分母都乘以或除以相同的數(shù),分數(shù)的大小不變。 這里指的相同的數(shù)是指什么數(shù)? 指出:分母是0的分數(shù)是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數(shù)可以是自然數(shù),也可以是小數(shù),也可以是分數(shù)。

  請全班同學將結(jié)語說完整,全班讀。 小結(jié):就是我們今天學習的內(nèi)容:分數(shù)的基本性質(zhì)?磿|(zhì)疑。 勾出關(guān)鍵詞語,幫助理解掌握。 (在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內(nèi)容,有效地提高教學效率,使教學目標得以順利地實施。) 鞏固練習 在括號里填上適當?shù)臄?shù)使等式成立 幾組相等分數(shù)的天空練習

 。ㄓ糜嬎銠C將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)

  3、請找我的好朋友練習。(以游戲的形式來進行)

  要求:(1)將幾張寫有分數(shù)的卡片發(fā)給幾位同學,請 他們看清楚上面的分數(shù)。

 。 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數(shù)大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數(shù)用大屏幕顯示出來,便于全班同學練習。)

  4、判斷對錯 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

 。ㄟ@道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發(fā)出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)

  5、思考練習題 = 課堂總結(jié) 總結(jié)本課內(nèi)容,復述分數(shù)的基本性質(zhì)。

【分數(shù)的基本性質(zhì)教案】相關(guān)文章:

《分數(shù)的基本性質(zhì)》教案12-17

分數(shù)的基本性質(zhì)教案01-20

分數(shù)的基本性質(zhì)09-29

《分數(shù)的基本性質(zhì)》09-29

分數(shù)的基本性質(zhì)(一)09-29

分數(shù)的基本性質(zhì)(二)09-29

分數(shù)的基本性質(zhì)數(shù)學教案08-26

小學數(shù)學《分數(shù)基本性質(zhì)》優(yōu)秀教案09-06

數(shù)學教案-分數(shù)的基本性質(zhì)(一)09-29