八年級數(shù)學教案

時間:2021-02-26 16:39:47 數(shù)學教案 我要投稿

關于八年級數(shù)學教案三篇

  作為一位杰出的教職工,很有必要精心設計一份教案,教案是備課向課堂教學轉化的關節(jié)點。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的八年級數(shù)學教案3篇,僅供參考,歡迎大家閱讀。

關于八年級數(shù)學教案三篇

八年級數(shù)學教案 篇1

  一、學生起點分析

  通過前一章《勾股定理》的學習,學生已經明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學任務分析

  《數(shù)不夠用了》是義務教育課程標準北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內容安排了2個課時完成,第1課時讓學生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結合勾股定理知識,會根據要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).

  本節(jié)課的教學目標是:

 、偻ㄟ^拼圖活動,讓學生感受客觀世界中無理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);

 、蹖W生親自動手做拼圖活動,培養(yǎng)學生的動手能力和探索精神;

 、苣苷_地進行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;

  三、教學過程設計

  本節(jié)課設計了6個教學環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應用與鞏固;第五環(huán)節(jié):課堂小結;第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質疑

  內容:【想一想】

  ⑴一個整數(shù)的平方一定是整數(shù)嗎?

 、埔粋分數(shù)的平方一定是分數(shù)嗎?

  目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內容:1.【算一算】

  已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分數(shù))嗎?

  2.【剪剪拼拼】

  把邊長為1的兩個小正方形通過剪、拼,設法拼成一個大正方形,你會嗎?

  目的:選取客觀存在的“無理數(shù)“實例,讓學生深刻感受“數(shù)不夠用了”.

  效果:巧設問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分數(shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分數(shù)?

  【憶一憶】:讓學生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分數(shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學習奠定了基礎

  【找一找】:在下列正方形網格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

  目的:創(chuàng)設從感性到理性的認知過程,讓學生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學習新知的興趣

  效果:學生感受到無理數(shù)產生的過程,確定存在一種數(shù)與以往學過的數(shù)不同,產生了學習新數(shù)的必要性.

  第四環(huán)節(jié):應用與鞏固

  內容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網格中,畫出兩條線段:

  1.長度是有理數(shù)的線段

  2.長度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網格中畫出四個三角形 (右1)

  2.三邊長都是有理數(shù)

  2.只有兩邊長是有理數(shù)

  3.只有一邊長是有理數(shù)

  4.三邊長都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

  它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

  目的:進一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對“新知”的理解,鞏固了本課所學知識.

  第五環(huán)節(jié):課堂小結

  內容:

  1.通過本課學習,感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?

  3.除了本課所認識的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導學生自己小結本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.

  效果:學生總結、相互補充,學會進行概括總結.

  第六環(huán)節(jié):布置作業(yè)

  習題2.1

  六、教學設計反思

 。ㄒ唬┥钍菙(shù)學的源泉,興趣是學習的動力

  大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發(fā)學習者的學習積極性,學習才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內容通過學生的生活經驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

 。ǘ┗橄鬄榫唧w

  常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.

 。ㄈ⿵娀R間聯(lián)系,注意糾錯

  既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.

八年級數(shù)學教案 篇2

  知識要點

  1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

  相應地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、一次函數(shù)的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

  3、正比例函數(shù)y=kx的性質

  (1)、正比例函數(shù)y=kx的圖象都經過

  原點(0,0),(1,k)兩點的一條直線;

  (2)、當k0時,圖象都經過一、三象限;

  當k0時,圖象都經過二、四象限

  (3)、當k0時,y隨x的增大而增大;

  當k0時,y隨x的增大而減小。

  4、一次函數(shù)y=kx+b的性質

  (1)、經過特殊點:與x軸的交點坐標是 ,

  與y軸的交點坐標是 .

  (2)、當k0時,y隨x的增大而增大

  當k0時,y隨x的增大而減小

  (3)、k值相同,圖象是互相平行

  (4)、b值相同,圖象相交于同一點(0,b)

  (5)、影響圖象的兩個因素是k和b

 、賙的正負決定直線的方向

 、赽的正負決定y軸交點在原點上方或下方

  5.五種類型一次函數(shù)解析式的確定

  確定一次函數(shù)的解析式,是一次函數(shù)學習的重要內容。

  (1)、根據直線的解析式和圖像上一個點的坐標,確定函數(shù)的解析式

  例1、若函數(shù)y=3x+b經過點(2,-6),求函數(shù)的解析式。

  解:把點(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函數(shù)的解析式為:y=3x-12

  (2)、根據直線經過兩個點的坐標,確定函數(shù)的解析式

  例2、直線y=kx+b的圖像經過A(3,4)和點B(2,7),

  求函數(shù)的表達式。

  解:把點A(3,4)、點B(2,7)代入y=kx+b,得

  ,解得:

  函數(shù)的解析式為:y=-3x+13

  (3)、根據函數(shù)的圖像,確定函數(shù)的解析式

  例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

  (小時)之間的關系.求油箱里所剩油y(升)與行駛時間x

  (小時)之間的.函數(shù)關系式,并且確定自變量x的取值范圍。

  (4)、根據平移規(guī)律,確定函數(shù)的解析式

  例4、如圖2,將直線 向上平移1個單位,得到一個一次

  函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .

  解:直線 經過點(0,0)、點(2,4),直線 向上平移1個單位

  后,這兩點變?yōu)?0,1)、(2,5),設這個一次函數(shù)的解析式為 y=kx+b,

  得 ,解得: ,函數(shù)的解析式為:y=2x+1

  (5)、根據直線的對稱性,確定函數(shù)的解析式

  例5、已知直線y=kx+b與直線y=-3x+6關于y軸對稱,求k、b的值。

  例6、已知直線y=kx+b與直線y=-3x+6關于x軸對稱,求k、b的值。

  例7、已知直線y=kx+b與直線y=-3x+6關于原點對稱,求k、b的值。

  經典訓練:

  訓練1:

  1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

  (1)梯形的面積y與上底的長x之間的關系是否是函數(shù)關系?為什么?

  (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關系式 。

  訓練2:

  1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).

  2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

  A.k1 B.k-1 C.k1 D.k為任意實數(shù).

  3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

  訓練3:

  1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

  2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函數(shù)y=-2x+ 4的圖象經過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

  4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經過原點,則k=_____;

  若y隨x的增大而增大,則k__________.

  5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

  訓練4:

  1、 正比例函數(shù)的圖象經過點A(-3,5),寫出這正比例函數(shù)的解析式.

  2、已知一次函數(shù)的圖象經過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

  3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

  4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。

  5、已知y-1與x成正比例,且 x=-2時,y=-4.

  (1)求出y與x之間的函數(shù)關系式;

  (2)當x=3時,求y的值.

  一、填空題(每題2分,共26分)

  1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .

  2、若直線 和直線 的交點坐標為 ,則 .

  3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關于 軸對稱,則 .

  4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

  5、函數(shù) ,如果 ,那么 的取值范圍是 .

  6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設長增加 ,寬增加 ,則 與 的函數(shù)關系是 .自變量的取值范圍是 .且 是 的 函數(shù).

  7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內, 隨 的增大而 .

  8、已知一次函數(shù) 和 的圖象交點的橫坐標為 ,則 ,一次函數(shù) 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .

  9、已知一次函數(shù) 的圖象經過點 ,且它與 軸的交點和直線 與 軸的交點關于 軸對稱,那么這個一次函數(shù)的解析式為 .

  10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

  11、一次函數(shù) 的圖象如圖 ,則 與 的大小關系是 ,當 時, 是正比例函數(shù).

  12、 為 時,直線 與直線 的交點在 軸上.

  13、已知直線 與直線 的交點在第三象限內,則 的取值范圍是 .

  二、選擇題(每題3分,共36分)

  14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

  15、若直線 與 的交點在 軸上,那么 等于( )

  A.4 B.-4 C. D.

  16、直線 經過一、二、四象限,則直線 的圖象只能是圖4中的( )

  17、直線 如圖5,則下列條件正確的是( )

  18、直線 經過點 , ,則必有( )

  A.

  19、如果 , ,則直線 不通過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知關于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

  A. B. C. D.都不對

  21、如圖6,兩直線 和 在同一坐標系內圖象的位置可能是( )

  圖6

  22、已知一次函數(shù) 與 的圖像都經過 ,且與 軸分別交于點B, ,則 的面積為( )

  A.4 B.5 C.6 D.7

  23、已知直線 與 軸的交點在 軸的正半軸,下列結論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )

  A.1個 B.2個 C.3個 D.4個

  24、已知 ,那么 的圖象一定不經過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關系可用圖象表示為( )

  三、解答題(1~6題每題8分,7題10分,共58分)

  26、如圖8,在直角坐標系內,一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數(shù)解析式.

  27、一次函數(shù) ,當 時,函數(shù)圖象有何特征?請通過不同的取值得出結論?

  28、某油庫有一大型儲油罐,在開始的8分鐘內,只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內的油從24噸增至40噸,隨后又關閉進油管,只開出油管,直到將油罐內的油放完,假設在單位時間內進油管與出油管的流量分別保持不變.

  (1)試分別寫出這一段時間內油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關系式.

  (2)在同一坐標系中,畫出這三個函數(shù)的圖象.

  29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

  (1)設用電 度時,應交電費 元,當 100和 100時,分別寫出 關于 的函數(shù)關系式.

  (2)小王家第一季度交納電費情況如下:

  月份 一月份 二月份 三月份 合計

  交費金額 76元 63元 45元6角 184元6角

  問小王家第一季度共用電多少度?

  30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

  (1)求 與 之間的函數(shù)關系式;

  (2)若每度電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

  31、汽車從A站經B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關系;(2)如果汽車再行駛30分,離A站多少千米?

  32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調出100噸水泥,乙?guī)炜烧{出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

  路程/千米 運費(元/噸、千米)

  甲庫 乙?guī)?甲庫 乙?guī)?/p>

  A地 20 15 12 12

  B地 25 20 10 8

  (1)設甲庫運往A地水泥 噸,求總運費 (元)關于 (噸)的函數(shù)關系式,畫出它的圖象(草圖).

  (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

八年級數(shù)學教案 篇3

  一、創(chuàng)設情境

  在學習與生活中,經常要研究一些數(shù)量關系,先看下面的問題.

  問題1如圖是某地一天內的氣溫變化圖.

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

  解隨著存期x的增長,相應的年利率y也隨著增長.

  問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關系?

  (2)波長l越大,頻率f就________.

  解(1)l與f的乘積是一個定值,即

  lf=300000,

  或者說.

  (2)波長l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

  利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

【八年級數(shù)學教案】相關文章:

八年級數(shù)學教案01-10

精選八年級數(shù)學教案3篇03-05

精選八年級數(shù)學教案三篇03-06

八年級數(shù)學教案三篇03-06

【精選】八年級數(shù)學教案三篇03-03

【精選】八年級數(shù)學教案3篇03-05

精選八年級數(shù)學教案八篇02-27

八年級數(shù)學教案4篇02-26

精選八年級數(shù)學教案4篇03-01

精選八年級數(shù)學教案五篇03-03