八年級(jí)數(shù)學(xué)教案

時(shí)間:2021-05-09 10:09:25 數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)教案范文集錦7篇

  作為一名人民教師,編寫(xiě)教案是必不可少的,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么你有了解過(guò)教案嗎?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案7篇,僅供參考,歡迎大家閱讀。

八年級(jí)數(shù)學(xué)教案范文集錦7篇

八年級(jí)數(shù)學(xué)教案 篇1

  1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門(mén),活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫(huà)演示拉動(dòng)過(guò)程如圖)

  3.再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義.

  矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).

  矩形是我們最常見(jiàn)的圖形之一,例如書(shū)桌面、教科書(shū)的封面等都有矩形形象.

  【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.

 、匐S著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?

 、诋(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個(gè)角都是直角.

  矩形性質(zhì)2 矩形的對(duì)角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).

  分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對(duì)角線長(zhǎng)AC=BD=2OA=2×4=8(cm).

  例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).

  分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

八年級(jí)數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

  2、過(guò)程與方法

  (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力.

  (2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.

  3、情感態(tài)度與價(jià)值觀

  (1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣.

  (2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

  教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題.

  教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題.

  教學(xué)準(zhǔn)備:

多媒體

  教學(xué)過(guò)程:

  第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

  情景:

  如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

  第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

  學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.

  學(xué)生匯總了四種方案:

 。ǎ保 (2) (3)(4)

  學(xué)生很容易算出:情形(1)中A→B的路線長(zhǎng)為:AA’+d,情形(2)中A→B的路線長(zhǎng)為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

  學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開(kāi)圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短.

  如圖:

 。ǎ保┲蠥→B的路線長(zhǎng)為:AA’+d;

 。ǎ玻┲蠥→B的路線長(zhǎng)為:AA’+A’B>AB;

 。ǎ常┲蠥→B的路線長(zhǎng)為:AO+OB>AB;

 。ǎ矗┲蠥→B的路線長(zhǎng)為:AB.

  得出結(jié)論:利用展開(kāi)圖中兩點(diǎn)之間,線段最短解決問(wèn)題.在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開(kāi)圓柱體,具體觀察.接下來(lái)后提問(wèn):怎樣計(jì)算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

  第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

  教材23頁(yè)

  李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

 。1)你能替他想辦法完成任務(wù)嗎?

 。2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

 。3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

  1.甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠(yuǎn)?

  2.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

  3.有一個(gè)高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問(wèn)這根鐵棒有多長(zhǎng)?

  第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問(wèn)答)

  內(nèi)容:

  1、如何利用勾股定理及逆定理解決最短路程問(wèn)題?

  第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

  內(nèi)容:

  作業(yè):1.課本習(xí)題1.5第1,2,3題.

  要求:A組(學(xué)優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

  板書(shū)設(shè)計(jì):

  教學(xué)反思:

八年級(jí)數(shù)學(xué)教案 篇3

  11.1 與三角形有關(guān)的線段

  11.1.1 三角形的邊

  1.理解三角形的概念,認(rèn)識(shí)三角形的頂點(diǎn)、邊、角,會(huì)數(shù)三角形的個(gè)數(shù).(重點(diǎn))

  2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))

  3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))

  一、情境導(dǎo)入

  出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會(huì)生活中處處有數(shù)學(xué).

  教師利用多媒體演示三角形的形成過(guò)程,讓學(xué)生觀察.

  問(wèn):你能不能給三角形下一個(gè)完整的定義?

  二、合作探究

  探究點(diǎn)一:三角形的概念

  圖中的銳角三角形有( )

  A.2個(gè)

  B.3個(gè)

  C.4個(gè)

  D.5個(gè)

  解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.

  方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.

  探究點(diǎn)二:三角形的三邊關(guān)系

  【類(lèi)型一】 判定三條線段能否組成三角形

  以下列各組線段為邊,能組成三角形的是( )

  A.2c,3c,5c

  B.5c,6c,10c

  C.1c,1c,3c

  D.3c,4c,9c

  解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.

  方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長(zhǎng)度之和大于第三條線段的長(zhǎng)度即可.

  【類(lèi)型二】 判斷三角形邊的取值范圍

  一個(gè)三角形的三邊長(zhǎng)分別為4,7,x,那么x的取值范圍是( )

  A.3<x<11 B.4<x<7

  C.-3<x<11 D.x>3

  解析:∵三角形的三邊長(zhǎng)分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

  方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識(shí)進(jìn)行解決.

  【類(lèi)型三】 等腰三角形的三邊關(guān)系

  已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為4和9,求這個(gè)三角形的周長(zhǎng).

  解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長(zhǎng)的兩種情況,再根據(jù)兩邊和大于第三邊來(lái)判斷能否構(gòu)成三角形,從而求解.

  解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長(zhǎng)是4+9+9=22.

  方法總結(jié):在求三角形的邊長(zhǎng)時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長(zhǎng)能否組成三角形.

  【類(lèi)型四】 三角形三邊關(guān)系與絕對(duì)值的綜合

  若a,b,c是△ABC的'三邊長(zhǎng),化簡(jiǎn)|a-b-c|+|b-c-a|+|c+a-b|.

  解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來(lái)判定絕對(duì)值里的式子的正負(fù),然后去絕對(duì)值符號(hào)進(jìn)行計(jì)算即可.

  解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

  方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類(lèi)問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).

  三、板書(shū)設(shè)計(jì)

  三角形的邊

  1.三角形的概念:

  由不在同一直線上的三條線段首尾順次相接所組成的圖形.

  2.三角形的三邊關(guān)系:

  兩邊之和大于第三邊,兩邊之差小于第三邊.

  本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線段能不能?chē)梢粋(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能?chē)桑械牟荒車(chē),由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能?chē)扇切蔚娜龡l邊之間到底有什么關(guān)系”.通過(guò)觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力.

八年級(jí)數(shù)學(xué)教案 篇4

  一、學(xué)生起點(diǎn)分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中

  可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

  ● 知識(shí)與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過(guò)程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;

  (2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;

  (3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過(guò)程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?

  2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

  意圖:

  通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

  意圖:

  通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  內(nèi)容2:說(shuō)理

  提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。

  注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。

  活動(dòng)3:反思總結(jié)

  提問(wèn):

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

  4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?

  意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用

  效果

  每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫(huà)出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。

  效果:

  學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。

  效果:

  學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

  意圖:

  鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。

  效果:

  學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。

  4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

  5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書(shū)設(shè)計(jì)

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

八年級(jí)數(shù)學(xué)教案 篇5

  學(xué)習(xí)目標(biāo)

  1、在同一直角坐標(biāo)系中,感受圖形上點(diǎn)的坐標(biāo)變化與圖形的變化(平移、軸對(duì)稱(chēng)、伸長(zhǎng)、壓縮)之間的關(guān)系并能找出變化規(guī)律。

  2、由坐標(biāo)的變化探索新舊圖形之間的變化。

  重點(diǎn)

  1、 作某一圖形關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)圖形,并能寫(xiě)出所得圖形相應(yīng)各點(diǎn)的坐標(biāo)。

  2、 根據(jù)軸對(duì)稱(chēng)圖形的特點(diǎn),已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。

  難點(diǎn)

  體會(huì)極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡(jiǎn)單的問(wèn)題

  學(xué)習(xí)過(guò)程(導(dǎo)入、探究新知、即時(shí)練習(xí)、小結(jié)、達(dá)標(biāo)檢測(cè)、作業(yè))

  第一課時(shí)

  學(xué)習(xí)過(guò)程:

  一、舊知回顧:

  1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。

  2、坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo)的表示方法____________。

  3、各象限點(diǎn)的坐標(biāo)的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(diǎn)(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?

  (2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?

  例2、(1)將魚(yú)的頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉?lái)的2倍畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?

  (2)將魚(yú)的頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1/2畫(huà)出圖形,分析所得圖形與原來(lái)圖形相比有什么變化?

  四、題組訓(xùn)練

  1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點(diǎn)用線段依次連接起來(lái)形成一個(gè)圖案。

  (1)這四個(gè)點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來(lái)的1/2,將所得的四個(gè)點(diǎn)用線段依次連接起來(lái),所得圖案與原來(lái)圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來(lái)的2倍呢?

  歸納:圖形坐標(biāo)變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長(zhǎng)與壓縮:

  第二課時(shí)

  一、舊知回顧:

  1、軸對(duì)稱(chēng)圖形定義:如果一個(gè)圖形沿著 對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱(chēng)圖形。

  中心對(duì)稱(chēng)圖形定義:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形

  二、新知檢索:

  1、如圖,左邊的魚(yú)與右邊的魚(yú)關(guān)于y軸對(duì)稱(chēng)。

  1、左邊的魚(yú)能由右邊的魚(yú)通過(guò)平移、壓縮或拉伸而得到嗎?

  2、各個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo)有怎樣的關(guān)系?

  3、如果將圖中右邊的魚(yú)沿x軸正方向平移1個(gè)單位長(zhǎng)度,為保持整個(gè)圖形關(guān)于y軸對(duì)稱(chēng),那么左邊的魚(yú)各個(gè)頂點(diǎn)的坐標(biāo)將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚(yú)是通過(guò)什么樣的變換得到 左圖的魚(yú)的。

  2、如果將右邊的魚(yú)的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉?lái)的1倍,畫(huà)出圖形,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系。

  3、如果將右邊的魚(yú)的縱、橫坐標(biāo)都分別變?yōu)樵瓉?lái)的1倍,得到的魚(yú)與原來(lái)的魚(yú)有什么樣的位置關(guān)系

  四、題組練習(xí)

  1、將坐標(biāo)作如下變化時(shí),圖形將怎樣變化?

  ① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

  ④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫(xiě)出第二象限中蝴蝶各個(gè)頂點(diǎn)的坐標(biāo)。

  3、 如圖,作字母M關(guān)于y軸的軸對(duì)稱(chēng)圖形,并寫(xiě)出所得圖形相應(yīng)各端點(diǎn)的坐標(biāo)。

  4、 描出下圖中楓葉圖案關(guān)于x軸的軸對(duì)稱(chēng)圖形的簡(jiǎn)圖。

  學(xué)習(xí)筆記

八年級(jí)數(shù)學(xué)教案 篇6

  活動(dòng)一、創(chuàng)設(shè)情境

  引入:首先我們來(lái)看幾道練習(xí)題(幻燈片)

 。◤(fù)習(xí):平行線及三角形全等的知識(shí))

  下面我們一起來(lái)欣賞一組圖片(幻燈片)

  [學(xué)生活動(dòng)]觀看后答問(wèn)題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請(qǐng)你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)

  [學(xué)生活動(dòng)]小組合作交流,拼出圖案的類(lèi)型。

  同學(xué)們所拼的圖形中,除了有我們學(xué)過(guò)的三角形,還有很多四邊形,今天,我們一起來(lái)研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)

  活動(dòng)二、合作交流,探求新知

  問(wèn)題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學(xué)生活動(dòng)]認(rèn)真觀察、討論、思考、推理。

  鼓勵(lì)學(xué)生交流,并是試著用自己的語(yǔ)言概括出平行四邊形的定義。

  學(xué)生交流,歸納:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

  并說(shuō)明:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫它的對(duì)角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問(wèn)題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對(duì)邊分別平行,平行四邊形還有什么特征呢?

  [學(xué)生活動(dòng)]動(dòng)手操作,小組演示交流。鼓勵(lì)學(xué)生用多種方法探究。

  小結(jié)平行四邊形的性質(zhì):

  平行四邊形的對(duì)邊相等

  平行四邊形的對(duì)角相等(這里要弄清對(duì)角、對(duì)邊兩個(gè)名詞)

  你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學(xué)生活動(dòng)]先分析思路尤其是輔助線,請(qǐng)學(xué)生上黑板證明。

  自己完成性質(zhì)2的證明。

  活動(dòng)三、運(yùn)用新知

  性質(zhì)掌握了嗎?一起來(lái)看一道題目:

  嘗試練習(xí)(幻燈片)例1

  [學(xué)生活動(dòng)]作嘗試性解答。

八年級(jí)數(shù)學(xué)教案 篇7

  一、教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

  2、能力目標(biāo):①,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;

 、冢瑢(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的平移,復(fù)制所求的圖形;

  3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。

  二、重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形連續(xù)變化的特點(diǎn);

  難點(diǎn):圖形的劃分。

  三、教學(xué)方法:

  講練結(jié)合。使用多媒體課件輔助教學(xué)。

  八年級(jí)數(shù)學(xué)上冊(cè)教案四、教具準(zhǔn)備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學(xué)設(shè)計(jì):

  教師活動(dòng)

  學(xué)生活動(dòng)

  設(shè)計(jì)意圖

  創(chuàng)設(shè)情景,探究新知:

  (演示課件):教材上小狗的圖案。提問(wèn):(1)這個(gè)圖案有什么特點(diǎn)?(2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的平移而形成?(3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。

  看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?

  展示教材64頁(yè)3-10,提問(wèn):左圖是一種“工”字形磚,右圖是怎樣通過(guò)左圖得到的?

  小組討論,派代表到臺(tái)上給大家講解。

  氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。

  (演示課件)教材65頁(yè)圖3-11,提問(wèn):這個(gè)圖可以看做是什么“基本圖案”通過(guò)平移得到的?

  暢所欲言,互相補(bǔ)充。

  課堂小結(jié):

  在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周?chē)鷮ふ移揭频睦印?/p>

  課堂練習(xí):

  (演示課件)教材65頁(yè)“隨堂練習(xí)”。

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。

  六、教學(xué)反思:

  本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

【八年級(jí)數(shù)學(xué)教案范文集錦7篇】相關(guān)文章:

小學(xué)數(shù)學(xué)教案范文集錦7篇02-12

初中數(shù)學(xué)教案(集錦15篇)03-31

小學(xué)數(shù)學(xué)教案(集錦15篇)09-04

小學(xué)數(shù)學(xué)教案范文六篇06-19

小學(xué)數(shù)學(xué)教案范文五篇06-02

小學(xué)數(shù)學(xué)教案范文10篇04-26

小學(xué)數(shù)學(xué)教案范文8篇03-17

小學(xué)數(shù)學(xué)教案范文6篇03-15

小學(xué)數(shù)學(xué)教案范文7篇03-06

小學(xué)數(shù)學(xué)教案模板集錦八篇03-05