八年級數(shù)學教案

時間:2021-06-01 10:09:08 數(shù)學教案 我要投稿

八年級數(shù)學教案模板集合十篇

  作為一名人民教師,就不得不需要編寫教案,借助教案可以提高教學質(zhì)量,收到預期的教學效果。那么問題來了,教案應(yīng)該怎么寫?下面是小編精心整理的八年級數(shù)學教案10篇,希望對大家有所幫助。

八年級數(shù)學教案模板集合十篇

八年級數(shù)學教案 篇1

  活動一、創(chuàng)設(shè)情境

  引入:首先我們來看幾道練習題(幻燈片)

 。◤土暎浩叫芯及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學生活動]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學生活動]小組合作交流,拼出圖案的類型。

  同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學生活動]認真觀察、討論、思考、推理。

  鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

  學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

  小結(jié)平行四邊形的性質(zhì):

  平行四邊形的對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結(jié)論是如何得到的嗎?(學生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

  自己完成性質(zhì)2的證明。

  活動三、運用新知

  性質(zhì)掌握了嗎?一起來看一道題目:

  嘗試練習(幻燈片)例1

  [學生活動]作嘗試性解答。

八年級數(shù)學教案 篇2

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  二、例習題分析

  例1(補充)下列各句判定矩形的說法是否正確?為什么?

 。1)有一個角是直角的四邊形是矩形;(×)

 。2)有四個角是直角的四邊形是矩形;(√)

 。3)四個角都相等的四邊形是矩形;(√)

  (4)對角線相等的四邊形是矩形;(×)

 。5)對角線相等且互相垂直的四邊形是矩形;(×)

  (6)對角線互相平分且相等的四邊形是矩形;(√)

 。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

  (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的條件不滿足三個的肯定不是矩形;

 。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

八年級數(shù)學教案 篇3

  知識結(jié)構(gòu):

  重點與難點分析:

  本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學生在應(yīng)用它們的時候,經(jīng);煜,幫助學生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結(jié)合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

  教法建議:

  本節(jié)課教學方法主要是“以學生為主體的討論探索法”。在數(shù)學教學中要避免過多告訴學生現(xiàn)成結(jié)論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數(shù)學的內(nèi)在規(guī)律。具體說明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

  學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發(fā)言.最后找一名學生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

  (2)采用“類比”的學習方法,獲取知識。

  由性質(zhì)定理的學習,我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當?shù)狞c撥引導。

  (3)總結(jié),形成知識結(jié)構(gòu)

  為了使學生對本節(jié)課有一個完整的認識,便于今后的應(yīng)用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

  一.教學目標:

  1.使學生掌握等腰三角形的判定定理及其推論;

  2.掌握等腰三角形判定定理的運用;

  3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;

  5.通過知識的縱橫遷移感受數(shù)學的辯證特征.

  二.教學重點:等腰三角形的判定定理

  三.教學難點:性質(zhì)與判定的區(qū)別

  四.教學用具:直尺,微機

  五.教學方法:以學生為主體的討論探索法

  六.教學過程:

  1、新課背景知識復習

  (1)請同學們說出互逆命題和互逆定理的概念

  估計學生能用自己的語言說出,這里重點復習怎樣分清題設(shè)和結(jié)論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

  啟發(fā)學生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

  1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學生說出已知、求證,使學生進一步熟悉文字轉(zhuǎn)化為數(shù)學語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導學生分析:

  聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

  (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

  (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

  2.推論1:三個角都相等的三角形是等邊三角形.

  推論2:有一個角等于60°的等腰三角形是等邊三角形.

  要讓學生自己推證這兩條推論.

  小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應(yīng)用舉例

  例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

  分析:讓學生畫圖,寫出已知求證,啟發(fā)學生遇到已知中有外角時,常?紤]應(yīng)用外角的兩個特性①它與相鄰的`內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學生板演即可.

  補充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結(jié)BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結(jié):求線段相等一般在三角形中求解,添加適當?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

  證明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結(jié):

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習

  教材 P.75中1、2、3.

  八.作業(yè)

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書設(shè)計

八年級數(shù)學教案 篇4

  一、教學目標:

  1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

  2、會求一組數(shù)據(jù)的極差.

  二、重點、難點和難點的突破方法

  1、重點:會求一組數(shù)據(jù)的極差.

  2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

  三、課堂引入:

  下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

  從表中你能得到哪些信息?

  比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

  經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

  這是不是說,兩個時段的氣溫情況沒有什么差異呢?

  根據(jù)兩段時間的氣溫情況可繪成的折線圖.

  觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

  用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

  四、例習題分析

  本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習題分析

  問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統(tǒng)計知識首先應(yīng)回憶復習已學知識.問題3答案并不唯一,合理即可。

八年級數(shù)學教案 篇5

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認識直棱柱第 1 課時 / 共 課時

  教學目標(含重點、難點)及

  設(shè)置依據(jù)教學目標

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會認直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

  教學重點與難點

  教學重點:直棱柱的有關(guān)概念.

  教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

  教學準備每個學生準備一個幾何體,(分好學習小組)教師準備各種直棱柱和長方體、立方體模型

  教 學 過 程

  內(nèi)容與環(huán)節(jié)預設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學生很容易回答出更多的答案。

  師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

  析:一個同學回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

  2.合作交流

  師:以學習小組為單位,拿出事先準備好的幾何體。

  學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學語言。

  學生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。

  師:請大家找出與長方體,立方體類似的物體或模型。

  析:舉出實例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學以至用

  出示例題。(先請學生單獨考慮,再作講解)

  析:引導學生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)

  最后完成例題中的“想一想”

  5.鞏固練習(學生練習)

  完成“課內(nèi)練習”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?

  合作交流后得到:重點直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

  板書設(shè)計

  作業(yè)布置或設(shè)計作業(yè)本及課時特訓

八年級數(shù)學教案 篇6

  數(shù)據(jù)的波動

  教學目標:

  1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標準差和方差,能借助計算器求出相應(yīng)的數(shù)值。

  教學重點:會計算某些數(shù)據(jù)的極差、標準差和方差。

  教學難點:理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

  教學準備:計算器,投影片等

  教學過程:

  一、創(chuàng)設(shè)情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

  3、在甲、丙兩廠中,你認為哪個廠雞腿質(zhì)量更符合要求?為什么?

  (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標準差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

  則s2= ,

  而s= 稱為該數(shù)據(jù)的標準差(既方差的算術(shù)平方根)

  從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)

  五、鞏固練習:課本第172頁隨堂練習

  六、課堂小結(jié):

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標準差?

  七、布置作業(yè):習題5.5第1、2題。

八年級數(shù)學教案 篇7

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學目的】 精選學生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養(yǎng)學生思維的批判性和深刻性。

  【課前練習】

  1、關(guān)于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數(shù)根,當△_______時,方程有兩個不相等的實數(shù)根,當△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當x12+x22=15時,求m的值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠蹋杂袑崝?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習】

  練習1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當k< 時,方程有兩個不相等的實數(shù)根。

 。2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

  ∴當k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習2(02廣州市)當a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當a=0時,方程為4x-1=0,∴x=

 。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關(guān)于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學教案 篇8

  教學建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點”+“平行”得“中點”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點分析

  本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

  本節(jié)的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

  ①從生活實例引入,如刻度尺、作業(yè)本、柵欄、等等;

 、诳捎脝栴}式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

  教學設(shè)計示例

  一、教學目標

  1、使學生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學生的作圖能力。

  3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

  4、通過本節(jié)學習,體會圖形語言和符號語言的和諧美

  二、教法設(shè)計

  學生觀察發(fā)現(xiàn)、討論研究,教師引導分析

  三、重點、難點

  1、教學重點:平行線等分線段定理

  2、教學難點:平行線等分線段定理

  四、課時安排

  l課時

  五、教具學具

  計算機、投影儀、膠片、常用畫圖工具

  六、師生互動活動設(shè)計

  教師復習引入,學生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學生板演練習

  七、教學步驟

  【復習提問】

  1、什么叫平行線?平行線有什么性質(zhì)。

  2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

  【引入新課】

  由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑W生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

  下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

 。ㄒ龑W生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

  證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。

  引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學生必須掌握好。

  接下來講如何利用平行線等分線段定理來任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點。

  作法:①作射線 。

  ②在射線 上以任意長順次截取 。

 、圻B結(jié) 。

 、苓^點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

  、 、 、 就是所求的五等分點。

 。ㄕf明略,由學生口述即可)

  【總結(jié)、擴展】

  小結(jié):

 。╨)平行線等分線段定理及推論。

 。2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

 。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

 。4)應(yīng)用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書設(shè)計

  十、隨堂練習

  教材P182中1、2

八年級數(shù)學教案 篇9

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標系(2)

  教學目標

  知識與技能

  1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內(nèi)容。

  過程與方法

  1.經(jīng)歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數(shù)形結(jié)合思想,培養(yǎng)學生的合作 交流能力;

  2.通過由點確定坐標到根據(jù)坐標描點的轉(zhuǎn)化過程,進一步培養(yǎng)學生的轉(zhuǎn)化意識。

  情感態(tài)度與價值觀

  通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數(shù)學的興趣。

  教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學過程

  第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

  在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關(guān)系,坐標軸上點的坐標有什么特點。

  練習:指出下列 各點以及所在象限或坐標軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)

  由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內(nèi)的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?

  (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標系畫,要求每位同學獨立完成。

  (學生描點、畫圖)

  (拿出一位做對的學生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結(jié),全班交流)

  本節(jié)課在復習上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內(nèi)容。

  在例題和練習中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

  第五環(huán)節(jié) 布置作業(yè)

  習題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級數(shù)學教案 篇10

  一、知識與技能

  1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學生的辨別唯物主義觀點.

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學生的抽象思維能力,提高數(shù)學化意識.

  三、情感態(tài)度與價值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學學習的重要性,提高學生的學習數(shù)學的興趣.

  2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.

  教學重點:理解和領(lǐng)會反比例函數(shù)的概念.

  教學難點:領(lǐng)悟反比例的概念.

  教學過程

  一、創(chuàng)設(shè)情境,導入新課

  活動1

  問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達形式.

  教師組織學生討論,提問學生,師生互動.

  在此活動中老師應(yīng)重點關(guān)注學生:

  ①能否積極主動地合作交流.

 、谀芊裼谜Z言說明兩個變量間的關(guān)系.

 、勰芊窳私馑懻摰暮瘮(shù)表達形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

 ;(2)

  ;(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?

 。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

 。3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學生先獨立思考,在進行全班交流.

  教師操作課件,提出問題,關(guān)注學生思考的過程,在此活動中,教師應(yīng)重點關(guān)注學生:

  (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

 ;(2)

 。唬3)

  概念:如果兩個變量x,y之間的關(guān)系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學生先進行獨立思考,再進行全班交流.教師提出問題,關(guān)注學生思考.此活動中教師應(yīng)重點關(guān)注:

  ①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W生能否順利抽象反比例函數(shù)的模型;

 、蹖W生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當x=2時,y=6

  (1)寫出y與x的函數(shù)關(guān)系式:

  (2)求當x=4時,y的值.

  師生行為:

  學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應(yīng)重點關(guān)注:

 、賹W生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因為y是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設(shè)

  ,因為x=2時,y=6,所以有

  解得k=12

  因此

 。2)把x=4代入

  ,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

  (1)寫出y與x之間的函數(shù)關(guān)系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

  (1)寫出這個反比例函數(shù)的表達式;

 。2)根據(jù)函數(shù)表達式完成上表.

  學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關(guān)注“學困生”.

  四、課時小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學對象.反比例函數(shù)具有豐富的數(shù)學含義,通過舉例、說理、討論等活動,感知數(shù)學眼光,審視某些實際現(xiàn)象.

【八年級數(shù)學教案模板集合十篇】相關(guān)文章:

小學數(shù)學教案模板集合7篇04-21

小學數(shù)學教案模板集合八篇02-27

小學數(shù)學教案模板集合9篇04-16

小學數(shù)學教案模板集合8篇01-24

小學數(shù)學教案模板集合10篇11-23

小學數(shù)學教案模板集合5篇07-27

有關(guān)小學數(shù)學教案模板集合5篇01-19

【精華】小學數(shù)學教案模板集合6篇01-15

關(guān)于小學數(shù)學教案模板集合六篇12-01

【推薦】小學數(shù)學教案模板集合9篇11-11