數(shù)學(xué)教案:圓柱的體積(精選16篇)
作為一名為他人授業(yè)解惑的教育工作者,很有必要精心設(shè)計(jì)一份教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。快來參考教案是怎么寫的吧!下面是小編為大家收集的數(shù)學(xué)教案:圓柱的體積,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)教案:圓柱的體積 1
教學(xué)內(nèi)容:
北師大版小學(xué)數(shù)學(xué)教材六年級下冊第8—10頁。
教學(xué)目標(biāo):
1、結(jié)合具體情境和實(shí)踐活動,了解圓柱體積(包括容積)的含義,能夠運(yùn)用公式正確的計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的思想和方法,提高解決實(shí)際問題的能力。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):掌握圓柱體積的計(jì)算公式。
難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、情境導(dǎo)入
1、出示教學(xué)情境:怎樣用學(xué)過的知識測量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準(zhǔn)備用什么方法來計(jì)算水的體積?
讓學(xué)生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的木柱子、壓路機(jī)的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計(jì)算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計(jì)算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關(guān)?
學(xué)生猜想,教師出示相應(yīng)的課件演示,讓學(xué)生觀察,體會圓柱的體積和它的底面積和高,有關(guān)系,有怎樣的關(guān)系。
2、圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的'體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
。ㄓ谜n件展示切拼過程,讓學(xué)生觀察等分的份數(shù)越多越接近長方體,彌補(bǔ)直觀操作等分的份數(shù)太多不易操作的缺陷。)
學(xué)生討論交流:
(1)把圓柱拼成長方體后,什么變了,什么沒變?
。2)拼成的長方體與圓柱之間有什么聯(lián)系?
。3)通過觀察得到什么結(jié)論?
得到:圓柱的體積=底面積×高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結(jié)出公式。
四、練習(xí)設(shè)計(jì):
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因?yàn)殚L方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對的畫“√”,錯誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大!
(2)圓柱體的高越長,它的體積越大。×
(3)圓柱體的體積與長方體的體積相等!
(4)圓柱體的底面直徑和高可以相等!
3、分別計(jì)算下列各圖形的體積,再說說這幾個圖形體積計(jì)算方法之間的聯(lián)系。
4×3×8
6×6×6
3.14×(5÷2)2×8
=96(cm3)
。216(cm3)
。157(cm3)
4、計(jì)算下面各圓柱的體積。
60×4
3.14×12×5
3.14×(6÷2)2×10
。240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個杯子能否裝下3000mL的牛奶?
3.14×(14÷2)2×20
。3077.2(cm3)
。3077.2(mL)
3077.2mL>3000mL
答:這個杯子能裝下3000mL的牛奶。
五、課堂小結(jié):談?wù)勥@節(jié)課你有哪些收獲?
數(shù)學(xué)教案:圓柱的體積 2
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的`關(guān)系,再利用求長方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
(2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
數(shù)學(xué)教案:圓柱的體積 3
教學(xué)目標(biāo):
1.結(jié)合實(shí)際讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
教學(xué)重點(diǎn):
理解并掌握圓柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
教學(xué)準(zhǔn)點(diǎn):
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(一個為橡皮泥)、水槽、水。
教學(xué)過程:
一、情境激趣導(dǎo)入新課
1、課始師首先出示一個長方體和一個正方體,說說怎樣求它們的體積,接著師往正方體容器中倒入一定量的水,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:有什么現(xiàn)象發(fā)生?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?” (板書課題)
二、自主探究, 學(xué)習(xí)新知
(一)設(shè)疑
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個圓柱學(xué)具的體積嗎?
2、再出示一個用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)
師:看來,我們剛才的方法有一定的局限性,要是能像求長方體或正方體那樣,有一個通用的公式
。ǘ┎孪
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測一個,圓柱的體積公式可能是什么?說說你的理由?
。ㄈ(yàn)證
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個實(shí)驗(yàn)?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報交流)
3、指名兩位學(xué)生上臺用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時,拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1) 圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2) 長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3) 長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4) 你認(rèn)為圓柱的體積可以怎樣計(jì)算?
。ㄉ鷧R報交流,師根據(jù)學(xué)生講述適時板書。)
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是V=Sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做 ”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評價)
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個圓柱的體積?(測不同數(shù)據(jù)計(jì)算)
11、練一練:列式計(jì)算求下列各圓柱體的體積。
。1)底面半徑2cm,高5cm。
。2)底面直徑6dm,高1m。
。3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升
1、判斷正誤:
。1)等底等高的圓柱體和長方體體積相等!ǎ
。2)一個圓柱的底面積是10cm2,高是5m,它的體積是10×5=50cm3。.....()
。3)圓柱的底面積越大,它的體積就越大。............( )
。4)一個圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......( )
2、這是我們學(xué)校種榕樹的一個花壇,測得花壇內(nèi)直徑是4m,花壇內(nèi)填土高度是0.5m,算一算這個花壇內(nèi)一共填土多少立方米?
3、學(xué)習(xí)很愉快,我們來慶祝一下:在一個棱長為20厘米正方體紙盒中,放一個最大的圓柱體蛋糕,系上180厘米長的絲帶(打結(jié)部分忽略不計(jì)),那么這個蛋糕的體積到底是多少呢?
四、全課總結(jié)自我評價
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
教學(xué)反思:
圓柱的體積是幾何知識的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握圓柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動,培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法,同時在學(xué)習(xí)活動中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時意識到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時,學(xué)生意識到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會靈活應(yīng)用知識解決簡單的實(shí)際問題,在鞏固體積計(jì)算方法的同時,進(jìn)一步感受到數(shù)學(xué)知識的使用價值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識探究的全過程。
動手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動手操作的機(jī)會,為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺,通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的`轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個學(xué)生上臺操作演示,然后再課件動態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個探究過程以學(xué)生自主學(xué)習(xí)為主,知識的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會學(xué)習(xí)”是對學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識,更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個學(xué)習(xí)過程,使學(xué)生學(xué)得主動有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
數(shù)學(xué)教案:圓柱的體積 4
一、教學(xué)目標(biāo)
。ㄒ唬┲R與技能
用已學(xué)的圓柱體積知識解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
。ǘ┻^程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計(jì)算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。
。ㄈ┣楦袘B(tài)度和價值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題)
【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。
。ǘ┨剿鲗(shí)踐,體驗(yàn)轉(zhuǎn)化過程
1、創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的`容積是多少?)
2、你覺得你能輕松解決什么問題?
。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會兒有用哦!
(2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?
數(shù)學(xué)教案:圓柱的體積 5
探究目標(biāo):
1、組織學(xué)生開展測量、計(jì)算、估測等數(shù)學(xué)實(shí)踐活動,使學(xué)生進(jìn)一步掌握圓柱體積計(jì)算公式,并能運(yùn)用公式正確地計(jì)算圓柱的體積。
2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實(shí)踐能力,同時結(jié)合具體的情境培養(yǎng)其估測意識。
3、使學(xué)生學(xué)會與他人合作,并能比較清楚地表達(dá)和交流解決問題的過程和結(jié)果。
4、讓學(xué)生體驗(yàn)解決策略的多樣性,不斷激發(fā)其對數(shù)學(xué)的好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動。
教學(xué)重難點(diǎn):
學(xué)生會應(yīng)用圓柱體積公式解決實(shí)際問題。
探究過程:
一、遷移引入
提問:一個圓柱的底面積是80平方厘米,高是20厘米,求它的體積。
提問:如果已知的是底面半徑和高,該怎么求呢?
二、自主探究
1、出示長方體魚缸。
要計(jì)算這個長方體魚缸能裝多少水,就是求什么?
怎樣求這個長方體的容積呢?
2、出示圓柱形魚缸。
⑴估測。這個圓柱形魚缸的容積大約是多少?
、撇僮、匯報。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進(jìn)行操作計(jì)算,各小組派代表演示操作過程,并展示計(jì)算過程。
學(xué)生可能的回答有:
生1:這個圓柱的底面周長是94.5厘米,它的高是12厘米,計(jì)算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我們小組測量的`是底面直徑和高。底面直徑長30厘米,高是12厘米,計(jì)算過程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)
、仍u價。
組織學(xué)生間進(jìn)行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進(jìn)一步掌握圓柱體積的計(jì)算方法。
、煞此。引導(dǎo)學(xué)生將實(shí)際計(jì)算結(jié)果與自己的估測結(jié)果進(jìn)行對比。自己矯正偏差。
、恃由臁H绻苛⒎椒置姿1千克,這個魚缸大約能裝水多少千克?
3、自學(xué)例題。
組織學(xué)生自學(xué)課本例5。同桌的兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進(jìn)行互問互答。
三、鞏固練習(xí)
做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。
學(xué)生獨(dú)立完成,指名板演,集體評講。
四、創(chuàng)意作業(yè)
學(xué)生綜合運(yùn)用所學(xué)的知識,進(jìn)行計(jì)算、繪圖、裁剪、粘貼等多項(xiàng)操作活動。
在一張長30厘米,寬20厘米的長方形紙上進(jìn)行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?
數(shù)學(xué)教案:圓柱的體積 6
教學(xué)目標(biāo):
1、使學(xué)生掌握圓柱體積公式,會用公式計(jì)算圓柱體積,能解決一些實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗(yàn)轉(zhuǎn)化和極限的思想。
3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學(xué)重點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程并能正確應(yīng)用。
教學(xué)難點(diǎn):
借助教具演示,弄清圓柱與長方體的關(guān)系。
教具準(zhǔn)備:
多媒體課件、長方體、圓柱形容器若干個;學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式用學(xué)具。
教學(xué)設(shè)想:
《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進(jìn)行教學(xué)的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會計(jì)算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實(shí)踐操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探索。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報
生1:用量筒或量杯直接量出它的`體積;
生2:用秤稱出水的重量,然后進(jìn)一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計(jì)算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學(xué)過了長方體的體積計(jì)算,只要量出長、寬、高就行
[設(shè)計(jì)意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]
2、創(chuàng)設(shè)問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機(jī)圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?
[設(shè)計(jì)意圖:進(jìn)一步從實(shí)際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗(yàn),探究新知
1、回顧舊知,幫助遷移
(1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側(cè)面展開是長方形
生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系
師:請同學(xué)們想想圓柱的體積與什么有關(guān)?
生1:可能與它的大小有關(guān)
生2:不是吧,應(yīng)該與它的高有關(guān)
[設(shè)計(jì)意圖:溫故而知新,既復(fù)習(xí)了舊知識又引出了新知識,學(xué)生在不知不覺中就學(xué)到了新知。]
(2)請大家回憶一下:在學(xué)習(xí)圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
配合學(xué)生回答演示課件。
[設(shè)計(jì)意圖:通過想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由形到體;同時使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)
。2)學(xué)生以小組為單位操作體驗(yàn)。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進(jìn)一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設(shè)計(jì)意圖:教師提出問題,學(xué)生帶著問題大膽猜測、動手體驗(yàn)。這樣學(xué)生在自主探索、體驗(yàn)、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
。3)學(xué)生小組匯報交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學(xué)生匯報,用教具進(jìn)行演示。
。4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
[設(shè)計(jì)意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實(shí)踐操作,動畫演示,驗(yàn)證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認(rèn)識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認(rèn)識得以升華(較抽象的認(rèn)識 公式)]
三、實(shí)踐應(yīng)用,鞏固新知。
1、火眼金睛判對錯。
。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
(2)圓柱的高越大,圓柱的體積就越大。( )
(3)如果兩個圓柱的體積相等,則它們一定等底等高。( )
[設(shè)計(jì)意圖:加深對剛學(xué)知識的分析和理解。]
2、計(jì)算下面各圓柱的體積。
(1)底面積是30平方厘米,高4厘米。
。2)底面周長是12.56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設(shè)計(jì)意圖:讓學(xué)生靈活運(yùn)用公式進(jìn)行計(jì)算。]
3、實(shí)踐練習(xí)。
提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。
這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。
[設(shè)計(jì)意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設(shè)計(jì)意圖:使學(xué)生進(jìn)一步感受到生活中處處有數(shù)學(xué),同時培養(yǎng)學(xué)生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?
[設(shè)計(jì)意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個學(xué)生都體驗(yàn)到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識,還包括能力、方法、情感等,學(xué)生體驗(yàn)到學(xué)習(xí)的樂趣,增強(qiáng)了學(xué)好數(shù)學(xué)的信心。]
板書設(shè)計(jì):
圓柱的體積
根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計(jì)算公式V= sh
教學(xué)反思:
本節(jié)的教學(xué)從生活的實(shí)際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運(yùn)用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點(diǎn)。運(yùn)用已有的知識(長方體體積的計(jì)算)經(jīng)驗(yàn)(圓面積公式的推導(dǎo))解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機(jī)的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強(qiáng)了實(shí)踐與知識的聯(lián)系,并創(chuàng)造性的補(bǔ)充了一些與學(xué)生身邊實(shí)際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。
數(shù)學(xué)教案:圓柱的體積 7
教學(xué)目標(biāo):
1、使學(xué)生能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
靈活應(yīng)用圓柱的體積公式解決實(shí)際問題。
教學(xué)過程:
一、復(fù)習(xí)
1、復(fù)習(xí)圓柱體積的推導(dǎo)過程
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。
2、復(fù)習(xí)長方體、正方體的體積公式后,讓學(xué)生獨(dú)立完成練習(xí)三第6題求體積部分,并指名板演。
二、解決實(shí)際問題
1、練習(xí)三第4題。
學(xué)生獨(dú)立練習(xí),強(qiáng)調(diào)選取有用信息,培養(yǎng)認(rèn)真審題習(xí)慣。
2、練習(xí)三第5題。
。1)指導(dǎo)學(xué)生變換公式:因?yàn)閂=Sh,所以h=V÷S。也可以列方程解答。
(2)學(xué)生選擇喜愛的方法解答這道題目。
3、練習(xí)三第10題。
指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。
4、練習(xí)三第8題。
(1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。
。2)在充分理解題意后學(xué)生獨(dú)立完成,集體訂正。
4、練習(xí)三第9題
。1)學(xué)生獨(dú)立審題后完成。
評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)
5、練習(xí)三第11題。
此題既可以用外圓柱體積減內(nèi)圓柱的體積,也可以用圓環(huán)的面積乘高。
。3)三、布置作業(yè)
完成練習(xí)中未做完的習(xí)題
教學(xué)反思
第五課時特別關(guān)注
練習(xí)三第4題,在教學(xué)中必須應(yīng)該特別關(guān)注。
關(guān)注理由:
1、有多余條件,是培養(yǎng)學(xué)生收集有用信息的契機(jī)。
這道題中出現(xiàn)兩個圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0 .5米。學(xué)生該如何合理做出選擇呢,關(guān)鍵要通過問題來思考。因?yàn)閱栴}是求“花壇中共需要填土多少方”,所以應(yīng)該選用“填土的高度是0.5米”這條數(shù)學(xué)信息。
在課堂中,我還要求學(xué)生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學(xué)生說“可以問花壇的體積是多少立方米”,還有的同學(xué)說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓(xùn)練,能夠有效培養(yǎng)學(xué)生收集、處理信息的能力,同時提升他們綜合分析問題的能力。
2、有容易忽視的條件,是培養(yǎng)學(xué)生認(rèn)真審題的契機(jī)。
一般習(xí)題中的數(shù)據(jù)是用阿拉伯?dāng)?shù)字呈現(xiàn),可這道題的問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學(xué)生忽視的數(shù)據(jù)“兩個”。其實(shí),配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學(xué)生仍舊會出錯。所以,應(yīng)抓住此題,培養(yǎng)學(xué)生良好審題的習(xí)慣。如在做這類習(xí)題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉(zhuǎn)化為數(shù)學(xué)問題等。
學(xué)生巧解
——巧求削去部分的體積
今天,全班同學(xué)做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米,F(xiàn)在,將它削成一個的圓柱體,求削去的部分是多少立方分米?
我因?yàn)樽龅眉葘τ挚,最終獲得全班第一名的成績。通過對比,我發(fā)現(xiàn)自己的.方法比同學(xué)們巧妙。
同學(xué)們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。
而我在做這一題時,想起上學(xué)期在正方形中畫的圓,圓的面積占正方形面積的157/200的結(jié)論。因?yàn)橹敝w的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應(yīng)該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
數(shù)學(xué)教案:圓柱的體積 8
●教學(xué)內(nèi)容
蘇教版六年級下冊第二單元圓柱和圓錐第三課時P17~18頁例4,P2頁練一練,練習(xí)一1~3。
●設(shè)計(jì)說明
教學(xué)目標(biāo):
知識技能:結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
數(shù)學(xué)思考:讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
解決問題:通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
情感態(tài)度:提高學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
利用“轉(zhuǎn)化”的方法推導(dǎo)圓柱體積公式的過程。
●課時安排
1課時
●教學(xué)準(zhǔn)備
教師準(zhǔn)備:多媒體課件一套。把圓柱沿底面等分成16份的教具。 學(xué)生準(zhǔn)備:預(yù)習(xí)教材,把圓柱沿底面等分成16份的教具。
●教學(xué)過程
一、創(chuàng)設(shè)情境,提出問題
某玩具廠廠長,他們廠新開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學(xué)們有什么方法?
二、動手實(shí)驗(yàn),探索公式
1.觀察、比較,建立猜想。引導(dǎo)生觀察例4中的三個幾何體,提問:
、砰L方體、正方體的體積相等嗎?為什么?
。ò鍟洪L方體的體積=底面積×高)
⑵圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的`底面積和高都相等,它們的體積有什么關(guān)系?
2.實(shí)驗(yàn)操作,驗(yàn)證猜想
讓學(xué)生自主探究(材料:圓柱體積木、圓柱體插拼教學(xué)具、師準(zhǔn)備課件),想辦法驗(yàn)證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長方體嗎?圓是如何轉(zhuǎn)化成長方形的,可以模仿這樣的方法來轉(zhuǎn)化。
、判〗M合作研究怎樣將圓柱體轉(zhuǎn)化成一個長方體。
⑵小組代表匯報,全班交流。
(學(xué)生按照自己的方式來轉(zhuǎn)化,會有多種轉(zhuǎn)化方法,教師適時加以鼓勵) ⑶演示操作。
a.請一名學(xué)生演示用切、插、拼的方法把圓柱體轉(zhuǎn)化成長方體。其他學(xué)生模仿操作。
b.思考:這是一個標(biāo)準(zhǔn)的長方體嗎?為什么?如果分割的份數(shù)越多,你會有什么發(fā)現(xiàn)?
c.電腦演示圓柱體轉(zhuǎn)化成長方體的過程(從16等份到32等份再到64等份)。
3.觀察比較,推導(dǎo)公式。
a.小組討論:
圓柱體轉(zhuǎn)化成長方體后,什么變了,什么沒有變?
b.根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積× 高
圓柱的體積 = 底面積× 高
數(shù)學(xué)教案:圓柱的體積 9
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握圓柱的體積計(jì)算公式。會用公式計(jì)算圓柱的體積,并能應(yīng)用分式解答一些實(shí)際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點(diǎn)和難點(diǎn)
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)過程設(shè)計(jì)
我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了圓柱體側(cè)面積和表面積的計(jì)算,今天研究圓柱的體積。(板書:圓柱的體積)
(一)復(fù)習(xí)準(zhǔn)備
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計(jì)算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。
(二)學(xué)習(xí)新課
1.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計(jì)算圓柱體積的公式?
2.看書自學(xué)。
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體與圓柱體有什么關(guān)系?
(3)怎樣計(jì)算切拼成的長方體體積?
3.推導(dǎo)圓柱體積公式。
(1)討論自學(xué)題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?
把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)動手操作切拼,將圓柱體轉(zhuǎn)化成長方體。
出示兩個等底等高圓柱體,讓學(xué)生比一比,底面積大小一樣,高相等,使學(xué)生確信,兩個圓柱體的體積相等。
請兩名同學(xué)按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學(xué)具,人人動手切拼,充分展示切拼過程和公式推導(dǎo)過程。)
現(xiàn)在討論自學(xué)題(2)。
師:這個長方體與圓柱體比較一下,什么變了?什么沒變?
生:形狀變了,體積大小沒變。
(3)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(引導(dǎo)學(xué)生有順序的進(jìn)行敘述,分小組討論,讓學(xué)生充分發(fā)言。)
小結(jié):切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的'底面積,長方體的高相當(dāng)于圓柱體的高。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書: V=Sh
(4)利用公式進(jìn)行計(jì)算。
例1 一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?
引導(dǎo)學(xué)生審題,說出題目中的已知條件和問題。做這道題還要注意什么?
生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。
2。1米=210厘米 (①用字母表示已知條件)
S=50 h=210 (②寫出字母公式)
V=Sh (③列式計(jì)算)
=50×210 (④寫出答題)
=10500
答:它的體積是10500立方厘米。
引導(dǎo)學(xué)生總結(jié)出做題步驟。
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。
(三)鞏固反饋
1.圓柱體的底面積3。14平方分米,高40厘米。它的體積是多少?
2.求下面圓柱體的體積。(單位:厘米)
3.填表:
4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?
5.一個圓柱形糧囤,從里面量,底面周長是6。28米,高20分米。它的容積是多少立方米?
(四)課堂總結(jié)
這節(jié)課,你學(xué)會了什么?還有什么問題?
生:學(xué)會了圓柱體的體積計(jì)算公式,并會用公式解答實(shí)際問題。
思考題:
一張長方形的紙長6。28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計(jì)算一下。
課堂教學(xué)設(shè)計(jì)說明
本節(jié)教案分三個層次。
第一層次是復(fù)習(xí)。
第二層次,推導(dǎo)圓柱體的計(jì)算公式。在學(xué)生自學(xué)的基礎(chǔ)上,親自動手切拼,把圓柱體轉(zhuǎn)化成近似的長方體,找出近似長方體與原圓柱體各部分相對應(yīng)部分,從而推出圓柱體積計(jì)算公式。用知識遷移法,把舊知識發(fā)展重新構(gòu)建轉(zhuǎn)化為新知識,使學(xué)生認(rèn)識到形變質(zhì)沒變的辯證關(guān)系,培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納能力。
第二層次,針對本節(jié)所學(xué)知識內(nèi)容,安排適度練習(xí),由易到難,由淺入深,使學(xué)生當(dāng)堂掌握所學(xué)的新知識,并通過練習(xí)達(dá)到一定技能。
本節(jié)教案特點(diǎn):充分體現(xiàn)以教師為主導(dǎo),學(xué)生為主體,讓學(xué)生動手、動腦、參與教學(xué)全過程,較好地處理教與學(xué),練與學(xué)的關(guān)系。寓教于玩中學(xué)會新知識,使學(xué)生愛學(xué)、會學(xué),培養(yǎng)了學(xué)生動手操作能力、口頭表達(dá)能力和邏輯思維能力,讓學(xué)生充分體驗(yàn)成功的喜悅。
數(shù)學(xué)教案:圓柱的體積 10
一、教學(xué)目標(biāo)
【知識與技能】
掌握圓柱的體積計(jì)算公式,能夠正確計(jì)算圓柱的體積。
【過程與方法】
通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。
【情感態(tài)度價值觀】
感受數(shù)學(xué)與生活的聯(lián)系,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)數(shù)學(xué)的自信心。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
圓柱的體積公式。
【教學(xué)難點(diǎn)】
圓柱體積公式的推導(dǎo)過程。
三、教學(xué)過程
(一)引入新課
提問:長方體和正方體的體積公式是什么?
預(yù)設(shè):長方體的體積=長×寬×高,正方體體積=棱長×棱長×棱長,兩者共有的體積公式:長方體
(正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。
(二)探索新知
1.圓柱體積公式的猜想
在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。
提問:長方體和正方體的`體積相等嗎?
預(yù)設(shè):根據(jù)長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。
追問:類比之前學(xué)過的體積公式,圓柱的體積可能和哪些因素有關(guān)?圓柱的體積公式可能是什么?
預(yù)設(shè):圓柱的體積和底面積、高有關(guān),圓柱的體積公式=底面積×高。
2.圓柱體積公式的推導(dǎo)
回憶圓的面積是通過轉(zhuǎn)化為長方形,從而推導(dǎo)出圓的面積公式。提問:圓柱可以轉(zhuǎn)化成已知體積公式的哪個圖形呢?
預(yù)設(shè):可以把圓柱轉(zhuǎn)換成長方體。
讓學(xué)生根據(jù)提前下發(fā)的能自動等份分割的圓柱體學(xué)具,同桌之間相互交流:如何把圓柱轉(zhuǎn)化為長方體呢?
預(yù)設(shè):學(xué)生分一分,拼一拼,組合成近似長方體的圖形。此時教師應(yīng)借助多媒體設(shè)備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數(shù)越多,拼成的圖形就越接近長方體。
組織學(xué)生進(jìn)行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關(guān)系?5分鐘后請小組代表進(jìn)行回答。
預(yù)設(shè):長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。
3.圓柱體積公式的推出
提問:圓柱的體積公式是什么?
預(yù)設(shè):圓柱的體積=底面積×高
用大寫字母V表示圓柱的體積,S表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。
預(yù)設(shè):V=Sh
教師強(qiáng)調(diào)字母V、S是大寫,h是小寫。
追問:回顧探究圓柱體積公式的過程,有哪些心得體會?
預(yù)設(shè)1:可以用長方體體積公式推導(dǎo)出圓柱體體積公式;
預(yù)設(shè)2:把圓柱轉(zhuǎn)化成長方體,與探索圓面積的方法類似;
預(yù)設(shè)3:計(jì)算長方體、正方體、圓柱的體積都可以用底面積乘高。
(三)課堂練習(xí)
試一試
一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?
(四)小結(jié)作業(yè)
提問:通過本節(jié)課的學(xué)習(xí)有什么收獲?
課后作業(yè):找找生活當(dāng)中的圓柱物體,量一量底面積和高,算一算物體體積。
四、板書設(shè)計(jì)
數(shù)學(xué)教案:圓柱的體積 11
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運(yùn)用體積公式解決簡單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
教學(xué)重、難點(diǎn):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會運(yùn)用體積公式解決簡單的實(shí)際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計(jì)算?歸納到底面積乘高上來。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問題
1、計(jì)算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進(jìn)行計(jì)算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算它的體積?
(啟發(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的.圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?討論后,整理出來,再進(jìn)行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報討論結(jié)果。
長方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計(jì)算。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結(jié):
通過這節(jié)課你學(xué)會了哪些知識,有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
數(shù)學(xué)教案:圓柱的體積 12
教學(xué)目標(biāo):
1、使學(xué)生熟練掌握圓柱的體積公式,能正確計(jì)算圓柱體積或圓柱形容器的容積。
2、使學(xué)生體驗(yàn)解決問題策略的多樣化,不斷激發(fā)學(xué)生以數(shù)學(xué)的好奇心和求知欲。
3、培養(yǎng)學(xué)生分析問題,解決問題及實(shí)踐應(yīng)用能力。
教學(xué)重點(diǎn):
掌握有關(guān)圓柱的表面積和體積的計(jì)算,會綜合運(yùn)用
教學(xué)難點(diǎn):
運(yùn)用所學(xué)的知識解決生活中的實(shí)際問題。
學(xué)習(xí)過程:
一、復(fù)習(xí)回顧
1、下列圖形的面積公式是什么?
長方形的面積=
正方形的面積=
平行四邊形的面積=
梯形的面積=
圓的面積=
2、長方體的表面積=
圓柱的表面積=
二、探究圓柱的體積公式:
圓柱的`體積= 。
如果圓柱的體積用V表示,底面積用S表示,高用h表示,則圓柱的體積公式用字母表示為。
如果圓柱的底面半徑為r,高用h表示,則圓柱的體積公式為。
三、例題學(xué)習(xí):
把一個棱長6分米的正方體木塊切削成一個體積最大的圓柱體,這個圓柱的體積是多少立方分米?
例2、一個底面半徑為3分米,高為8分米圓柱形水槽,把一塊石塊完全浸入這個水槽,水面上升了2分米,這塊石塊的體積是多少?
四、課堂練習(xí)
1、求下面圓柱的體積
1)底面積0.6平方米,高0.5米2)底面半徑4厘米,高12厘米
3)底面直徑5分米,高6分米
2、一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?
數(shù)學(xué)教案:圓柱的體積 13
【學(xué)習(xí)目標(biāo)】
1、探索并掌握圓柱的體積計(jì)算公式。
2、能運(yùn)用公式計(jì)算圓柱的體積,并解決實(shí)際問題。
【學(xué)習(xí)過程】
一、板書課題
師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。
二、出示目標(biāo)
本節(jié)課我們的目標(biāo)是:(出示)
1、探索并掌握圓柱的體積計(jì)算公式。
2、能運(yùn)用公式計(jì)算圓柱的體積,并解決實(shí)際問題。
了達(dá)到目標(biāo),下面請大家認(rèn)真地看書。
三、出示自學(xué)指導(dǎo)
認(rèn)真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點(diǎn)看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:
1、圓柱的體積公式是如何推導(dǎo)出來的?
2、圓柱的體積計(jì)算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認(rèn)真看書自學(xué),比誰自學(xué)的最認(rèn)真,自學(xué)效果最好。下面自學(xué)競賽開始。
四、先學(xué)
。ㄒ唬┛磿
學(xué)生認(rèn)真看書,教師巡視,督促人人都在認(rèn)真地看書。
。ǘz測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)
第20頁“做一做”和第21頁第5題。
要求:1、認(rèn)真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學(xué)認(rèn)真檢查。
五、后教
。ㄒ唬└
師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)
。ǘ┯懻
1、看第1題:認(rèn)為算式列對的請舉手?
【圓柱的體積=底面積×高】
2、看第2題:認(rèn)為算式列對的舉手?你是怎么思考的?
3、看計(jì)算過程和結(jié)果,認(rèn)為對的'舉手?
4、評正確率、板書,并讓學(xué)生同桌對改。
今天你們表現(xiàn)實(shí)在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)
六、補(bǔ)充練習(xí):
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。
3、把一個圓柱的側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.
下面,我們就來運(yùn)用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。
七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)
作業(yè):第3、4、7、8題寫作業(yè)本上
練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上
八、板書設(shè)計(jì)
課題三:圓柱的體積
圓柱的體積=底面積×高
課后反思:
本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實(shí)踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實(shí)踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實(shí)踐和思考的時間較多,練習(xí)的時間較少。
數(shù)學(xué)教案:圓柱的體積 14
教學(xué)目標(biāo):
1.結(jié)合實(shí)際,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動過程,培養(yǎng)學(xué)生探究推理能力,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)準(zhǔn)點(diǎn):
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)設(shè)想:
1.課前互動,我們做一個吹氣球的游戲,讓學(xué)生來對比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學(xué)生感受物體的體積就是物體所占用空間的大小。
2.教學(xué)伊始我創(chuàng)設(shè)學(xué)具槽做圓柱學(xué)具這一睛境,讓學(xué)生感知圓柱體積的概念,再通過讓學(xué)生給這4個圓柱學(xué)具排序這一問題設(shè)疑,讓學(xué)生明確學(xué)習(xí)目標(biāo)。
3.動手實(shí)踐是學(xué)生體驗(yàn)的主要方式,合作交流是學(xué)生體驗(yàn)的有效途徑。所以在教學(xué)中我為圖形轉(zhuǎn)化、猜想推理創(chuàng)設(shè)有助于學(xué)生自主探究的三步曲:第一步:選擇轉(zhuǎn)化的方法。第二步:體驗(yàn)轉(zhuǎn)化的過程、第三步:驗(yàn)證轉(zhuǎn)化的結(jié)果。引導(dǎo)學(xué)生開展觀察、操作、猜想、交流、轉(zhuǎn)化的活動,讓學(xué)生在數(shù)學(xué)活動中經(jīng)歷數(shù)學(xué)、體驗(yàn)數(shù)學(xué)。
4.用字母表示公式已經(jīng)是學(xué)生很熟知的幾何知識,因此我為學(xué)生提供了與圓柱體積有關(guān)的字母,讓他們寫出相應(yīng)的公式并在接下來的環(huán)節(jié)中引導(dǎo)學(xué)生發(fā)現(xiàn)公式與習(xí)題的聯(lián)系,讓他們對號入座。學(xué)生根據(jù)不同的公式進(jìn)行計(jì)算,給4個圓柱學(xué)具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對比算法中掌握新知。
5.體積和容積這兩個概念在五年級已經(jīng)學(xué)過,學(xué)生會說意義,但是通過了解,學(xué)生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環(huán)節(jié),讓學(xué)生在學(xué)習(xí)實(shí)踐中區(qū)別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學(xué)生的認(rèn)知規(guī)律。第二次探究則是加入表面積這一剛剛學(xué)過的內(nèi)容,讓學(xué)生在為3道選擇問題的練習(xí)中達(dá)到區(qū)別體積、容積、表面積的目的,從而實(shí)現(xiàn)學(xué)習(xí)運(yùn)用的最佳狀態(tài)。
6.最后的思維訓(xùn)練是計(jì)算正方體中最大圓柱體的體積,給學(xué)生以生動、形象、直觀的認(rèn)識,此題算法多樣,富于啟發(fā)地清晰揭示了知識的內(nèi)在規(guī)律,使它和教學(xué)過程有機(jī)組合,把學(xué)習(xí)延伸到實(shí)際,讓知識在體驗(yàn)中生成。
7.由于每個學(xué)生的知識經(jīng)驗(yàn)、生活情景、思維方式的不同,對知識的學(xué)習(xí)也有獨(dú)特的理解和感受。所以我讓他們用今天的知識去解決生活中的問題,并寫成數(shù)學(xué)日記,讓他們用自己的方式去體驗(yàn)、探究學(xué)習(xí)過程。
教學(xué)過程:
一、問題導(dǎo)入,質(zhì)疑問難
師:老師這里有兩個氣球,(師從兜里掏出兩個氣球,將其中一個遞給學(xué)生。)你試試把它們變大。(老師再把兩個氣球放回兜里。)為什么這個放不回去了?(因?yàn)槠渲幸粋的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?
師:這是一個制作學(xué)具的.學(xué)具槽,想一想,它可以做出什么樣的學(xué)具來?
生:圓柱學(xué)具。
師:是的。仔細(xì)觀察,你有什么發(fā)現(xiàn)?
生:圓柱學(xué)具占據(jù)了學(xué)具槽的空間。
師:這就是圓柱學(xué)具的體積。你真善于發(fā)現(xiàn)!能用你的話說說,什么是圓柱的體積嗎?
生:圓柱的體積就是圓柱所占空間的大小。
師:誰來試著給這4個圓柱學(xué)具按體積從大到小排排序?你來試試。
生:體積大小接近,不能確定。
師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現(xiàn)在我們就來研究圓柱的體積。(師板書。)
二、圖形轉(zhuǎn)化。猜想推理
師:想一想,你有辦法得到這4個圓柱學(xué)具的體積嗎?(圓柱課件再從槽中跳出。) 生:用公式計(jì)算。 生:用水或沙子轉(zhuǎn)化計(jì)算。 師:你們是怎樣轉(zhuǎn)化的,具體說說。
生:用橡皮泥轉(zhuǎn)化計(jì)算。
生:用圓形紙片疊加計(jì)算……
師:嗯,這些方法都很好,就在今天的課堂你會選擇哪種方法?
生:因?yàn)闆]有實(shí)驗(yàn)學(xué)具,所以只能用公式計(jì)算。
師:其他的方法可以在課后進(jìn)行。
師:想用公式計(jì)算的同學(xué),你想怎樣推導(dǎo)圓柱的體積公式呢?結(jié)合你們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),舉例說明。
生:大部分圖形公式的推導(dǎo)都是把新學(xué)的轉(zhuǎn)化為學(xué)過的。例如:圓形可以轉(zhuǎn)化為長方形。
師:聯(lián)系舊知識,采用轉(zhuǎn)化法,確實(shí)不錯。 師:那現(xiàn)在它是一個圓柱,你想怎么辦?
生:像剛才一樣進(jìn)行平均分。
師:你能具體說說嗎?
生:沿著圓柱的底面直徑平均切分成16個小扇形。
師:都說實(shí)踐出真知,接下來就請同學(xué)們拿出學(xué)具,動手嘗試著進(jìn)行轉(zhuǎn)化,并說說轉(zhuǎn)化后的結(jié)果。
生:將圓柱沿底面直徑平均分成16個小扇形,切分之后,可以拼成一個近似的長方體。
師:(剛才我們將圓柱沿底面直徑平均分成16個小扇形,拼成一個近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點(diǎn)。(64)你呢?(128)……
師:這是同學(xué)們剛才的轉(zhuǎn)化過程。
師:打開書,自由讀,用直線標(biāo)記,找出關(guān)鍵詞,依照關(guān)鍵詞自由讀讀轉(zhuǎn)化的過程。
師:現(xiàn)在再請一名同學(xué)到前面來演示轉(zhuǎn)化過程,其他同學(xué)注意觀察,圓柱轉(zhuǎn)化為長方體后什么變了,什么沒變7(圓柱轉(zhuǎn)化為長方體時形狀變了,但是它們底面積、高和體積都沒變。)
總結(jié)文字公式:長方體體積=底面積×高
圓柱體體積=底面積×高
師:恭喜大家,我們已經(jīng)成功地推導(dǎo)出圓柱的體積公式。(掌聲鼓勵一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計(jì)算公式息息相關(guān),請你們用字母表示出圓柱的體積公式。
生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h
師:對比這四個公式你又有什么新發(fā)現(xiàn)?(彩色粉筆畫線。)
生:相同之處都是底面積乘以高,不同是底面積求法不同。
師:謝謝你精彩的發(fā)現(xiàn),你叫什么名字,認(rèn)識一下,老師會記住你的。
三、運(yùn)用公式,解決問題
師:現(xiàn)在我們已經(jīng)知道了圓柱的體積公式,快來解決剛才的實(shí)際問題吧!這是我們要由大到小排序的4個圓柱學(xué)具,請你們拿出題卡計(jì)算出它們的體積并排序。
1號底面積50平方厘米,高2.1分米:
2號直徑是10厘米,高20厘米;
3號半徑是4厘米,高22厘米;
4號底面周長31.4厘米,高18厘米。
師:匯報一下你的計(jì)算和排序結(jié)果,并說說你應(yīng)用了哪個公式?
師:與他答案相同的同學(xué)舉手示意一下,你是怎樣做的?現(xiàn)在你清楚了嗎?
師:看來,靈活運(yùn)用公式,并選擇合理的算法。會使我們的學(xué)習(xí)更高效。
四、巧用公式,多重探究
師:同學(xué)們到現(xiàn)在為止,你都學(xué)到了哪些關(guān)于圓柱的知識?
生:表面積、體積、容積。
師:老師這里有一組習(xí)題。請你們選擇合適的問題。
師:讀完之后,你認(rèn)為求什么就可以大聲地說出來。
(生:體積、容積、表面積。)
學(xué)具廠有一個制作學(xué)具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米,_________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側(cè)面積是1727平方厘米_________________?
師:說說你選擇問題的根據(jù)是什么?
生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。
五、開放訓(xùn)練,拓展提升
師:學(xué)習(xí)很愉快,我們來慶祝一下:在一個棱長為a分米正方體盒中,放一個最大的圓柱體蛋糕,系上b分米長的絲帶,(打結(jié)部分忽略不計(jì))挖去1根直徑為c厘米,高是d厘米的圓柱蠟燭空隙,這個蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計(jì)算,看誰解法多并說明解題思路。
數(shù)學(xué)教案:圓柱的體積 15
一、情景引入
1、教學(xué)開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
。ㄔO(shè)計(jì)意圖:在這個環(huán)節(jié)設(shè)計(jì)觀察活動,意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)
二、自主探究
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
。1)、先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
。2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
。3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗(yàn)結(jié)果填入實(shí)驗(yàn)報告1中。(課件出示)
。4)、學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
。ㄔO(shè)計(jì)意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導(dǎo)學(xué)生找出決定圓柱體積的兩個因素,為學(xué)習(xí)新知識作鋪墊,同時也發(fā)展了學(xué)生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
。2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
。4)、學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的'體積可能也是用底面積乘高來計(jì)算。
(5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計(jì)算器計(jì)算體積,并填入實(shí)驗(yàn)報告2中。(課件出示)
(設(shè)計(jì)意圖 : 通過設(shè)疑使學(xué)生認(rèn)識到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計(jì)猜想的過程,充分運(yùn)用學(xué)生已有的知識經(jīng)驗(yàn),讓學(xué)生回憶了學(xué)習(xí)長方體體積時的實(shí)踐方法和將圓形轉(zhuǎn)化成長方形的過程,學(xué)生在如此豐富的知識經(jīng)驗(yàn)基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)
4、確定方法,探究實(shí)驗(yàn),驗(yàn)證體積公式。
。1)、首先要求學(xué)生利用實(shí)驗(yàn)工具,自主商討確定研究方法。
(2)、學(xué)生通過討論交流確定了兩種驗(yàn)證方案。
方案一:將圓柱c放入水中,驗(yàn)證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計(jì)算新形體的體積,驗(yàn)證圓柱d的體積。
。3)、學(xué)生按照自己所設(shè)想的方案動手實(shí)驗(yàn),并記錄有關(guān)數(shù)據(jù),填入實(shí)驗(yàn)報告2中。(課件出示)
(4)、實(shí)驗(yàn)后讓學(xué)生對數(shù)據(jù)進(jìn)行分析:用實(shí)驗(yàn)的方法得出的數(shù)據(jù)與實(shí)驗(yàn)前假想計(jì)算的數(shù)據(jù)進(jìn)行比較,你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報:實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長方體體積那樣,用底面積乘以高。(課件出示)
。7)、小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh ( 設(shè)計(jì)意圖 這部分教學(xué)采用以小組合作探究的學(xué)習(xí)方式進(jìn)行數(shù)學(xué)活動,充分調(diào)動學(xué)生各種感官,完成從操作→觀察、比較→歸納推理的認(rèn)知過程,讓學(xué)生通過自己動手、動腦得到結(jié)論。通過讓學(xué)生自己設(shè)計(jì)實(shí)驗(yàn)方案和自主實(shí)驗(yàn)探究的活動,培養(yǎng)了學(xué)生的創(chuàng)新精神和實(shí)踐能力。)
數(shù)學(xué)教案:圓柱的體積 16
教學(xué)目標(biāo)
1、理解圓柱體體積公式的推導(dǎo)過程,掌握計(jì)算公式。
2、會運(yùn)用公式計(jì)算圓柱的體積。
教學(xué)重點(diǎn)
圓柱體體積的計(jì)算。
教學(xué)難點(diǎn)
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
(一)教師提問
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導(dǎo)的?
。ǘ┱勗拰(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的。那圓柱的體積怎樣計(jì)算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算呢?這節(jié)課我們就來研究這個問題。(板書:圓柱的體積)
二、新授教學(xué)
(一)教學(xué)圓柱體的體積公式。(演示動畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學(xué)生利用學(xué)具操作。
3、啟發(fā)學(xué)生思考、討論:
(1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的`實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。
②拼成的近似的長方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
、劢崎L方體的高就是圓柱的高,沒有變化。
4、學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想。
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
6、推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的體積怎樣計(jì)算?
。2)學(xué)生匯報討論結(jié)果,并說明理由。
因?yàn)殚L方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W(xué)例4。
1、出示例4
例4、一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2、反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W(xué)例5。
1、出示例5
例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
。3.14×
。3.14×100
。314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
。7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1、圓柱體體積公式的推導(dǎo)方法。
2、公式的應(yīng)用。
四、課堂練習(xí)
(一)填表
底面積S(平方米)
高h(yuǎn)(米)
圓柱的體積V(立方米)
15
3
6.4
4
【數(shù)學(xué)教案:圓柱的體積】相關(guān)文章:
數(shù)學(xué)教案-圓柱的體積09-29
圓柱的體積09-29
圓柱的體積教案04-01
圓柱的體積教案12-17
圓柱的體積教學(xué)反思 圓柱體體積的教學(xué)反思10-18
圓柱的體積教學(xué)反思08-19
圓柱的體積教學(xué)反思04-02
《圓柱的體積》教學(xué)反思09-20