高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀

時間:2023-09-13 07:15:57 數(shù)學教案 我要投稿
  • 相關(guān)推薦

高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀

  作為一名辛苦耕耘的教育工作者,通常需要準備好一份教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀,希望能夠幫助到大家。

高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀

高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀1

  [教學目標]

  1、知識與技能目標:掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應的一些問題。

  2、過程與方法目標:讓學生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養(yǎng)學生分析問題解決問題的能力。

  3、情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習慣。

  [教學重難點]

  1、教學重點:等差數(shù)列的概念的理解,通項公式的推導及應用。

  2、教學難點:

  (1)對等差數(shù)列中“等差”兩字的把握;

 。2)等差數(shù)列通項公式的推導。

  [教學過程]

  一、課題引入

  創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學習一類特殊的數(shù)列,下面我們看這樣一些例子)

  二、新課探究

 。ㄒ唬┑炔顢(shù)列的定義

  1、等差數(shù)列的定義

  如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

 。1)定義中的關(guān)健詞有哪些?

 。2)公差d是哪兩個數(shù)的差?

 。ǘ┑炔顢(shù)列的通項公式

  探究1:等差數(shù)列的通項公式(求法一)

  如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?

  根據(jù)等差數(shù)列的定義可得:

  因此等差數(shù)列的通項公式就是:,探究2:等差數(shù)列的通項公式(求法二)

  根據(jù)等差數(shù)列的定義可得:

  將以上-1個式子相加得等差數(shù)列的通項公式就是:

  三、應用與探索

  例1、(1)求等差數(shù)列8,5,2,…,的第20項。

  (2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?

 。2)、分析:要判斷-401是不是數(shù)列的'項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。

  例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.

  解:由,得。

  在應用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

  鞏固練習

  1、等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

  2、一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

  四、小結(jié)

  1、等差數(shù)列的通項公式:

  公差;

  2、等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

  3、判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

  4、利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學系規(guī)律或解決數(shù)學問題。

  五、作業(yè):

  1、必做題:課本第40頁習題2.2第1,3,5題

  2、選做題:如何以最快的速度求:1+2+3+???+100=

  2.2.1等差數(shù)列學案

高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀2

  設(shè)計思路

  數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的.知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  教學過程:

  一、片頭

  (30秒以內(nèi))

  前面學習了數(shù)列的概念與簡單表示法,今天我們來學習一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點講解等差數(shù)列的定義,并且能初步判斷一個數(shù)列是否是等差數(shù)列。

  30秒以內(nèi)

  二、正文講解(8分鐘左右)

  第一部分內(nèi)容:由三個問題,通過判斷分析總結(jié)出等差數(shù)列的定義60秒

  第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學表達式50秒

  第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項與公差。根據(jù)這個練習總結(jié)出幾個常用的結(jié)152秒

  三、結(jié)尾

  (30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)

  自我教學反思

  本節(jié)課通過生活中一系列的實例讓學生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學會判斷一個數(shù)列是否是等差數(shù)列,培養(yǎng)了學生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學生做數(shù)學的過程,使學生對等差數(shù)列有了從感性到理性的認識過程。

高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀3

  一、教學內(nèi)容分析

  本節(jié)課是《普通高中課程標準實驗教科書·數(shù)學5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。

  數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  二、學生學習情況分析

  教學內(nèi)容針對的是高二的學生,經(jīng)過高中一年的學習,大部分學生知識經(jīng)驗已較為豐富,具備了較強的抽象思維能力和演繹推理能力,但也可能有一部分學生的基礎(chǔ)較弱,所以在授課時要從具體的生活實例出發(fā),使學生產(chǎn)生學習的興趣,注重引導、啟發(fā)學生的積極主動的`去學習數(shù)學,從而促進思維能力的進一步提高。

  三、設(shè)計思想

  1.教法

 、耪T導思維法:這種方法有利于學生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性。

 、品纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性。

 、侵v練結(jié)合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點。

  2.學法

  引導學生首先從四個現(xiàn)實問題(數(shù)數(shù)問題、女子舉重獎項設(shè)置問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。

  用多種方法對等差數(shù)列的通項公式進行推導。

  在引導分析時,留出“空白”,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學目標

  通過本節(jié)課的學習使學生能理解并掌握等差數(shù)列的概念,能用定義判斷一個數(shù)列是否為等差數(shù)列,引導學生了解等差數(shù)列的通項公式的推導過程及思想,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題;并在此過程中培養(yǎng)學生觀察、分析、歸納、推理的能力,在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力。

  五、教學重點與難點

  重點:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項公式的推導過程及應用。

  難點:

  ①理解等差數(shù)列“等差”的特點及通項公式的含義。

 、诶斫獾炔顢(shù)列是一種函數(shù)模型。

  關(guān)鍵:

  等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。

  六、教學過程(略)

【高中數(shù)學優(yōu)秀教案之《等差數(shù)列》優(yōu)秀】相關(guān)文章:

高中數(shù)學等差數(shù)列教案12-30

高中數(shù)學優(yōu)秀教案11-06

橋之美的優(yōu)秀教案09-20

優(yōu)秀高中數(shù)學教案12-05

優(yōu)秀美術(shù)教案之蟹09-24

高中數(shù)學優(yōu)秀教案7篇01-11

高中數(shù)學優(yōu)秀教案(7篇)01-12

高中數(shù)學優(yōu)秀教案(8篇)11-07

高中數(shù)學優(yōu)秀教案8篇11-06