八年級數(shù)學教案

時間:2024-06-22 14:56:53 數(shù)學教案 我要投稿

八年級數(shù)學教案15篇[精華]

  作為一名默默奉獻的教育工作者,就有可能用到教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么你有了解過教案嗎?以下是小編收集整理的八年級數(shù)學教案,僅供參考,歡迎大家閱讀。

八年級數(shù)學教案15篇[精華]

八年級數(shù)學教案1

  一、教材分析

  1、特點與地位:重點中的重點。

  本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運輸、通訊網(wǎng)絡(luò)等方面具有一定的實用意義。

  2、重點與難點:結(jié)合學生現(xiàn)有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

 。1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。

 。2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。

  3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應(yīng)用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學過程。

  二、教學目標分析

  1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

  2、能力目標:

 。1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數(shù)據(jù)抽象能力。

  (2)通過旅游景點線路選擇問題的.解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。

  3、素質(zhì)目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。

  三、教法分析

  課前充分準備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的內(nèi)容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據(jù)學生的反應(yīng)控制好教學進度是本節(jié)課成功的關(guān)鍵。

  四、學法指導

  1、課前上次課結(jié)課時給學生布置任務(wù),使其有針對性的預(yù)習。

  2、課中指導學生討論任務(wù)解決方法,引導學生分析本節(jié)課知識點。

  3、課后給學生布置同類型任務(wù),加強練習。

  五、教學過程分析

  (一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

  教學方法及注意事項:

 。1)采用提問方式,注意及時小結(jié),提問的目的是幫助學生回憶概念。

 。2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。

  (二)導入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學內(nèi)容“求最短路徑問題”。教學方法及注意事項:

 。1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現(xiàn)教學內(nèi)容的自然過渡。

 。2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

 。ㄈ┲v授新課(25~30分鐘)

  1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

  (1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學方法及注意事項:

  ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

 、谧⒁馐痉懂媹D只進行一部分,讓學生獨立思考、自主完成余下部分的轉(zhuǎn)化。

 、奂皶r總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。

  ④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學做準備。

  教學方法及注意事項:

 、賳l(fā)式教學,如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?

 、诮Y(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

 。ㄋ模┱n堂小結(jié)(3~5分鐘)

  1、明確本節(jié)課重點

  2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

 。ㄎ澹┎贾米鳂I(yè)

  1、書面作業(yè):復習本次課內(nèi)容,準備一道備用習題,靈活把握時間安排。

  六、教學特色

  以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現(xiàn)所講內(nèi)容的實用性,提高學生的學習興趣。

八年級數(shù)學教案2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

  二、目標和目標解析

  1.教學目標

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標解析

 。1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

 。2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

  本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

  四、教學過程設(shè)計

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

  例2 計算

  (1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的'平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

  例3 計算

 。1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

  4.綜合運用

 。1)算一算:

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

 。2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

 。3)談一談你對 與 的認識.

  【設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

  (2)運用二次根式性質(zhì)進行化簡需要注意什么?

 。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

 。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

  五、目標檢測設(shè)計

  1. ; ; .

  【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

  2.下列運算正確的是( )

  A. B. C. D.

  【設(shè)計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計意圖】考查學生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

  4.計算: .

  【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

八年級數(shù)學教案3

  分式方程

  教學目標

  1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

  2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。

  3.在活動中培養(yǎng)學生樂于探究、合作學習的`習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.

  教學重點:

  將實際問題中的等量 關(guān)系用分式方程表示

  教學難點:

  找實際問題中的等量關(guān)系

  教學過程:

  情境導入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

  如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關(guān)系?

  如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習

  (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

  六、學 習小結(jié)

  本節(jié)課你學到了哪些知識?有什么感想?

  七.作業(yè)布置

八年級數(shù)學教案4

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。

 。2)—3x≥0,x≤0,即x≤0時,是二次根式。

 。3),且x≠0,∴x>0,當x>0時,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>

  2。當x

  >2時,是二次根式。

  例4下列各式是二次根式,求式子中的.字母所滿足的條件:

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。

 。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

八年級數(shù)學教案5

  一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

  根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學習研究也是作用非凡。

  通過近些年的中考數(shù)學試卷的分析可以得出:韋達定理及其應(yīng)用是各地市中考數(shù)學命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

  通過韋達定理的教學,可以培養(yǎng)學生的`創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學問題的能力,也為學生今后學習方程理論打下基礎(chǔ)。

  (二)重點、難點

  一元二次方程根與系數(shù)的關(guān)系是重點,讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

  (三)教學目標

  1、知識目標:要求學生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。

八年級數(shù)學教案6

   一、學習目標及重、難點:

  1、了解方差的定義和計算公式。

  2、理解方差概念的產(chǎn)生和形成的過程。

  3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

  難點:理解方差公式

  二、自主學習:

  (一)知識我先懂:

  方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

  來表示。

  給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  (二)自主檢測小練習:

  1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

  2、甲、乙兩組數(shù)據(jù)如下:

  甲組:10 9 11 8 12 13 10 7;

  乙組:7 8 9 10 11 12 11 12.

  分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

  三、新課講解:

  引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )

  (2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

  歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

  (一)例題講解:

  例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、

  測試次數(shù) 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志強 10 13 16 14 12

  給力提示:先求平均數(shù),在利用公式求解方差。

  (二)小試身手

  1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

  去參加比賽。

  1、求下列數(shù)據(jù)的眾數(shù):

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年級一班46個同學中,13歲的有5人,14歲的'有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

  四、課堂小結(jié)

  方差公式:

  給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  每課一首詩:求方差,有公式;先平均,再求差;

  求平方,再平均;所得數(shù),是方差。

  五、課堂檢測:

  1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應(yīng)部分習題

  七、學習小札記:

  寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學教案7

  教學目標:

  1、知識目標:了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

  2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。

  重點與難點:

  重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。

  難點:分析典型圖案的設(shè)計意圖。

  疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

  教具學具準備:

  提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學過程設(shè)計:

  1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復習平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的'條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

  評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

  評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習

  (1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。

  (四)課時小結(jié)

  本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。

  通過今天的學習,你對圖案的設(shè)計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

  八年級數(shù)學上冊教案(五)延伸拓展

  進一步搜集身邊的各種標志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

八年級數(shù)學教案8

  一、學習目標:

  讓學生了解多項式公因式的意義,初步會用提公因式法分解因式

  二、重點難點

  重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來

  難點:讓學生識別多項式的公因式.

  三、合作學習:

  公因式與提公因式法分解因式的概念.

  三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的'多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。

  四、精講精練

  例1、將下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通過剛才的練習,下面大家互相交流,總結(jié)出找公因式的一般步驟.

  首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.

  其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的

  課堂練習

  1.寫出下列多項式各項的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小結(jié):

  總結(jié)出找公因式的一般步驟.:

  首先找各項系數(shù)的大公約數(shù),

  其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的

  注意:(a-b)2=(b-a)2

  六、作業(yè)

  1、教科書習題

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

八年級數(shù)學教案9

  一、教學目標:

  1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

  2、能力目標:

 、伲趯嵺`操作過程中,逐步探索圖形之間的平移關(guān)系;

  ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

  3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

  二、重點與難點:

  重點:圖形連續(xù)變化的特點;

  難點:圖形的劃分。

  三、教學方法:

  講練結(jié)合。使用多媒體課件輔助教學。

  四、教具準備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學設(shè)計:

  創(chuàng)設(shè)情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個圖案有什么特點?

  (2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的.大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學生充分討論,歸納總結(jié),老師給予適當?shù)闹笇,并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補充。

  課堂小結(jié):

  在教師的引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。

  課堂練習:

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學反思:

  本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。

八年級數(shù)學教案10

  教學目標:

  1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

  2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。

  3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。

  4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

  教學重點:體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

  教學難點:對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

  教學方法:歸納教學法。

  教學過程:

  一、知識回顧與思考

  1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

  一般地對于n個數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

  如某公司要招工,測試內(nèi)容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權(quán)。

  中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

  眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。

  如3,2,3,5,3,4中3是眾數(shù)。

  2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

 。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

 。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。

  (3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

 。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的`影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

  3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

  算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。

  4、利用計算器求一組數(shù)據(jù)的平均數(shù)。

  利用科學計算器求平均數(shù)的方法計算平均數(shù)。

  二、例題講解:

  例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:

  每人銷售件數(shù) 1800 510 250 210 150 120

  人數(shù) 113532

 。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);

 。2)假設(shè)銷售部負責人把每位營銷員的月銷售額定為平均數(shù),你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

  例2,某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少?

  三、課堂練習:復習題A組

  四、小結(jié):

  1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。

  2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

  五、作業(yè):復習題B組、C組(選做)

八年級數(shù)學教案11

  教學目標:

  【知識與技能】

  1、理解并掌握等腰三角形的性質(zhì)。

  2、會用符號語言表示等腰三角形的性質(zhì)。

  3、能運用等腰三角形性質(zhì)進行證明和計算。

  【過程與方法】

  1、通過觀察等腰三角形的對稱性,發(fā)展學生的形象思維。

  2、通過實踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學活動經(jīng)驗,感受數(shù)學思考過程的條理性,發(fā)展學生的合情推理能力。

  3、通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高學生運用幾何語言表達問題的,運用知識和技能解決問題的能力。

  【情感態(tài)度】

  引導學生對圖形的觀察、發(fā)現(xiàn),激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中取得成功的體驗。

  【教學重點】

  等腰三角形的性質(zhì)及應(yīng)用。

  【教學難點】

  等腰三角形的證明。

  教學過程:

  一、情境導入,初步認識

  問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據(jù)自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學生獨立思考,動手作圖后再互相交流評價。

  可按下列方法做出:

  作一條直線l,在l上取點A,在l外取點B,作出點B關(guān)于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

  問題2每位同學請拿出事先準備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

  教師指導:上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。

  在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

  教學說明:通過學生的動手操作與觀察發(fā)現(xiàn),加深學生對等腰三角形性質(zhì)的理解。

  二、思考探究,獲取新知

  教師依據(jù)學生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):

 、佟螧=∠C→兩個底角相等。

 、贐D=CD→AD為底邊BC上的中線。

 、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。

  ∠ADB=∠ADC=90°→AD為底邊BC上的高。

  指導學生用語言敘述上述性質(zhì)。

  性質(zhì)1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

  性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

  教師指導對等腰三角形性質(zhì)的證明。

  1、證明等腰三角形底角的性質(zhì)。

  教師要求學生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導學生分析思路時強調(diào):

  (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的`兩個三角形。

  (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

  2、證明等腰三角形“三線合一”的性質(zhì)。

  【教學說明】在證明中,設(shè)計輔助線是關(guān)鍵,引導學生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點,要求學生板書證明過程,以體會一題多解帶來的體驗。

  三、典例精析,掌握新知

  例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

  從而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教學說明】等腰三角形“等邊對等角”及“三線合一”性質(zhì),可以實現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學會從復雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。

  四、運用新知,深化理解

  第1組練習:

  1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。

  如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。

  2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。

  第2組練習:

  1、如果△ABC是軸對稱圖形,則它一定是( )

  A、等邊三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

  4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

  【教學說明】

  等腰三角形解邊方面的計算類型較多,引導學生見識不同類型,并適時概括歸納,幫學生形成解題能力,注意提醒學生分類討論思想的應(yīng)用。

  【答案】

  第1組練習答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2組練習答案:

  1、C

  2、C

  3、設(shè)三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L為4cm,6cm和6cm。

  4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。

  四、師生互動,課堂小結(jié)

  這節(jié)課主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用。請學生表述性質(zhì),提醒每個學生要靈活應(yīng)用它們。

  學生間可交流體會與收獲。

八年級數(shù)學教案12

  教學目標

  1.知識與技能

  領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點與關(guān)鍵

  1.重點:理解完全平方公式因式分解,并學會應(yīng)用.

  2.難點:靈活地應(yīng)用公式法進行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的

  教學方法

  采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容.

  教學過程

  一、回顧交流,導入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知識遷移】

  2.計算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【學生活動】從逆向思維的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例學習,應(yīng)用所學

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

  三、隨堂練習,鞏固深化

  課本P170練習第1、2題.

  【探研時空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、課堂總結(jié),發(fā)展?jié)撃?/p>

  由于多項式的.因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在運用公式因式分解時,要注意:

  (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解.

  五、布置作業(yè),專題突破

八年級數(shù)學教案13

  【教學目標】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學重難點】

  重點:理解分式有意義的條件,分式的值為零的條件.

  難點:能熟練地求出分式有意義的條件,分式的'值為零的條件.

  【教學過程】

  一、課堂導入

  1.讓學生填寫[思考],學生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

  設(shè)江水的流速為x千米/時.

  輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.

  3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是A÷B的形式.分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.

  二、例題講解

  例1:當x為何值時,分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.

  (補充)例2:當m為何值時,分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當x取何值時,下列分式有意義?

  3.當x為何值時,分式的值為0?

  四、小結(jié)

  談?wù)勀愕氖斋@.

  五、布置作業(yè)

  課本128~129頁練習.

八年級數(shù)學教案14

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學目的】 精選學生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養(yǎng)學生思維的批判性和深刻性。

  【課前練習】

  1、關(guān)于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數(shù)根,當△_______時,方程有兩個不相等的實數(shù)根,當△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變?yōu)橐淮畏匠蹋豢赡苡袃蓚實根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當x12+x22=15時,求m的'值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習】

  練習1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當k< 時,方程有兩個不相等的實數(shù)根。

 。2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

  ∴當k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習2(02廣州市)當a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當a=0時,方程為4x-1=0,∴x=

 。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關(guān)于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

  (2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學教案15

  一、學情分析

  本學期本人繼續(xù)擔任八年級(2)班的數(shù)學教學工作,八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數(shù)學生不上進,思維不緊跟老師,有部分同學基礎(chǔ)較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

  二、教材分析

  本學期教學內(nèi)容共計五章,知識的前后聯(lián)系,教材的教學目標,重、難點分析如下:

  第十七章分式

  本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。

  第十八章函數(shù)及其圖像

  函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,本單元學生在學習了一次函數(shù)后,進一步研究反比例函數(shù)。學生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會建立數(shù)學模型的思想,進一步發(fā)展學生的抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點之一;經(jīng)歷本章的重點之二:利用反比例函數(shù)及圖象解決實際問題的過程,發(fā)展學生的數(shù)學應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識別應(yīng)用過程,發(fā)展學生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達式,會作反比例函數(shù)圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養(yǎng),以及提高數(shù)形結(jié)合的意識和能力。

  第十九章全等三角形

  本章主要內(nèi)容是探索三角形全等的判定方法,領(lǐng)略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質(zhì)具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關(guān)知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規(guī)作圖的.方法。

  第二十章平行四邊形的判定

  本章的內(nèi)容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質(zhì),由性質(zhì)引出判定方法,在此基礎(chǔ)上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應(yīng)用。本章知識是在學習了平行線、三角形、平行四邊形的性質(zhì)等知識的基礎(chǔ)上的進一步深化和提高,是今后學習其他幾何知識的基礎(chǔ)。

  第二十一章數(shù)據(jù)的整理與初步處理

  本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學習如何利用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計總體的平均數(shù)和方差,進一步體會用樣本估計總體的思想。

  三、提高學科教育質(zhì)量的主要措施:

  1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導,認真制作測試試卷,也讓學生學會認真學習。

  2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學生的興趣,給學生介紹數(shù)學家,數(shù)學史,介紹相應(yīng)的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。

  3、引導學生積極參與知識的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構(gòu)造。

  4、引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現(xiàn)象看本質(zhì),提高學生舉一反三的能力,這是提高學生素質(zhì)的根本途徑之一,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。

  5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

  6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。

  7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數(shù)題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。

  8、開展分層教學,布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發(fā)展。

  9、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎(chǔ)知識,對差生,一些關(guān)鍵知識,輔導差生過關(guān),為差生以后的發(fā)展鋪平道路。

  10、培養(yǎng)學生學習數(shù)學的良好習慣。這些習慣包括:

 、僬J真做作業(yè)的習?包括作業(yè)前清理好桌面,作業(yè)后認真檢查;

 、陬A(yù)習的習慣;

 、壅J真看批改后的作業(yè)并及時更正的習慣;

 、苷J真做好課前準備的習慣;

  ⑤在書上作精要筆記的習慣;

 、尥咨票9軙Y料和學習用品的習慣;

 、哒J真閱讀數(shù)學教材的習慣。

【八年級數(shù)學教案】相關(guān)文章:

有關(guān)八年級數(shù)學教案八年級數(shù)學教案全套10-03

八年級數(shù)學教案12-04

八年級數(shù)學教案03-05

八年級數(shù)學教案【精】02-01

【精】八年級數(shù)學教案01-21

【推薦】八年級數(shù)學教案01-31

【熱門】八年級數(shù)學教案01-31

【薦】八年級數(shù)學教案01-17

八年級數(shù)學教案優(yōu)秀07-27

八年級數(shù)學教案(推薦)06-21