初中數(shù)學(xué)八年級上冊教案

時間:2023-02-06 11:39:53 初中數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)八年級上冊教案

  作為一名辛苦耕耘的教育工作者,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識。如何把教案做到重點突出呢?以下是小編為大家收集的初中數(shù)學(xué)八年級上冊教案,歡迎閱讀與收藏。

初中數(shù)學(xué)八年級上冊教案

初中數(shù)學(xué)八年級上冊教案1

  《正方形》教學(xué)設(shè)計

  教學(xué)內(nèi)容分析:

  ⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

 、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。

  ⑶對本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學(xué)生的推理能力。

  學(xué)生分析

 、艑W(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。

 、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。

  教學(xué)目標(biāo):

 、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。

 、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。

 、乔楦袘B(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

  重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。

  難點:探索正方形的判定,發(fā)展學(xué)生的推理能

  教學(xué)方法:類比與探究

  教具準(zhǔn)備:可以活動的四邊形模型。

  一、教學(xué)分析

  (一)教學(xué)內(nèi)容分析

  1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)

  2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系

  《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。

  3.本課教學(xué)內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點

  本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的.性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。

  (二)教學(xué)對象分析

  1.學(xué)生所在地區(qū)、學(xué)校及班級的特色

  我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點,但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。

  2.學(xué)生的年齡特點和認(rèn)知特點

  班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗,感受學(xué)習(xí)思考的樂趣。

  教學(xué)過程

  一:復(fù)習(xí)鞏固,建立聯(lián)系。

  【教師活動

  問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

 、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

  【學(xué)生活動

  學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。

  【教師活動

  評析學(xué)生的結(jié)果,給予表揚。

  總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。

  演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

  二:動手操作,探索發(fā)現(xiàn)。

  活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

  【學(xué)生活動

  學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

  設(shè)置問題:①什么是正方形?

  觀察發(fā)現(xiàn),從活動中體會。

  【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

  【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。

  設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

  【學(xué)生活動】

  小組討論,分組回答。

  【教師活動】

  總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

  設(shè)置問題③正方形有那些性質(zhì)?

  【學(xué)生活動】

  小組討論,舉手搶答。

  【教師活動

  表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角

  活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

  學(xué)生活動

  折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。

  教師活動

  演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

  學(xué)生活動

  小組充分交流,表達不同的意見。

  教師活動

  評析活動,總結(jié)發(fā)現(xiàn):

  一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

  有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

  有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

  四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

  以上是正方形的判定方法。

  正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

  學(xué)生交流,感受正方形

  三,應(yīng)用體驗,推理證明。

  出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。

  方法一解:∵四邊形ABCD是正方形

  ∴∠ABC=90°(正方形的四個角是直角)

  BC=AB=4cm(正方形的四條邊相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的對角線互相平分)

  ∴AO=×4=2cm

  方法二:證明△AOB是等腰直角三角形,即可得證。

  學(xué)生活動

  獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

  教師活動

  總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。

  出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

  學(xué)生活動

  小組交流,分析題意,整理思路,指名口答。

  教師活動

  說明思路,從已知出發(fā)或者從已有的判定加以選擇。

  四,歸納新知,梳理知識。

  這一節(jié)課你有什么收獲?

  學(xué)生舉手談?wù)撟约旱氖斋@。

  請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。

  發(fā)表評論

  教學(xué)目標(biāo):

  情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。

  能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

  認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

  教學(xué)重點、難點

  重點:等腰梯形性質(zhì)的探索;

  難點:梯形中輔助線的添加。

  教學(xué)課件:PowerPoint演示文稿

  教學(xué)方法:啟發(fā)法、

  學(xué)習(xí)方法:討論法、合作法、練習(xí)法

  教學(xué)過程:

 。ㄒ唬⿲(dǎo)入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

  結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

 。ǘ┑妊菪涡再|(zhì)的探究

  【探究性質(zhì)一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質(zhì)二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

  【探究性質(zhì)三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

 。ㄈ┵|(zhì)疑反思、小結(jié)

  讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

  學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

初中數(shù)學(xué)八年級上冊教案2

  一、背景知識

  《有理數(shù)的大小比較》選自浙江版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)七年級(上冊)》第一章《從自然數(shù)到有理數(shù)》的第5節(jié),有理數(shù)大小比較的提出是從學(xué)生生活熟悉的情境入手,借助于氣溫的高低及數(shù)軸,得出有理數(shù)的大小比較方法。課本安排了"做一做"等形式多樣的教學(xué)活動,讓學(xué)生通過觀察、思考和自己動手操作,體驗有理數(shù)大小比較法則的探索過程。

  二、教學(xué)目標(biāo)

  1、使學(xué)生能說出有理數(shù)大小的比較法則

  2、能熟練運用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對值概念比較兩個負(fù)數(shù)的大小,能利用數(shù)軸對多個有理數(shù)進行有序排列。

  3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。

  三、教學(xué)重點與難點

  重點:運用法則借助數(shù)軸比較兩個有理數(shù)的大小。

  難點:利用絕對值概念比較兩個負(fù)分?jǐn)?shù)的大小。

  四、教學(xué)準(zhǔn)備

  多媒體課件

  五、教學(xué)設(shè)計

  (一)交流對話,探究新知

  1、說一說

  (多媒體顯示)某一天我們5個城市的最低氣溫從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當(dāng)點拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。

  比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

  廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

  2、畫一畫:(1)把上述5個城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?

  (3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?

  (通過學(xué)生自己動手操作,觀察、思考,發(fā)現(xiàn)原點左邊的數(shù)都是負(fù)數(shù),原點右邊的數(shù)都是正數(shù);同時也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點右邊的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機追問,原點左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識的欲望,進一步驗證了原點左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結(jié)論:

  在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

  (二)應(yīng)用新知,體驗成功

  1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)

  例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

  分析:本題意有幾層含義?應(yīng)分幾步?

  要點總結(jié):小組討論歸納,本題解題時的一般步驟:

 、佼嫈(shù)軸;

 、诿椟c;

 、塾行蚺帕;

 、懿坏忍栠B接。

  隨堂練習(xí)

  P19 T1

  2、做一做

  (1)在數(shù)軸上表示下列各對數(shù),并比較它們的大小

 、2和7  、-6和-1  ③-6和-36 、-和-1.5

  (2)求出圖中各對數(shù)的`絕對值,并比較它們的大小。

  (3)由①、②從中你發(fā)現(xiàn)了什么?

  (學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達數(shù)學(xué)規(guī)律的能力。)

  要點總結(jié):兩個正數(shù)比較大小,絕對值大的數(shù)大;兩個負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。

  在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。

  (1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

  (2)兩個正數(shù)比較大小,絕對值大的數(shù)大。

  (3)兩個負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。

  3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。

  例2比較下列每對數(shù)的大小,并說明理由:(師生共同完成)

  (1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

  分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時在講解時,要注意格式。

  注:絕對值比較時,分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時,則應(yīng)先通分再比較,或把分子化相同再比較。

  兩個負(fù)數(shù)比較大小時的一般步驟:

 、偾蠼^對值;

 、诒容^絕對值的大小;

 、郾容^負(fù)數(shù)的大小。

  思考:還有別的方法嗎?(分組討論,積極思考)

  4、想一想:我們有幾種方法來判斷有理數(shù)的大小?你認(rèn)為它們各有什么特點?

  由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個數(shù)比較時一般選用第一種,當(dāng)多個有理數(shù)比較大小時,一般選用第二種較好。

  練一練:P19 T2、3、4

  5、考考你:請你回答下列問題:

  (1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?

  (2)有沒有絕對值最小的有理數(shù)?若有,請把它寫出來?

  (3)在于-1.5且小于4.2的整數(shù)有_____個,它們分別是____。

  (4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)

  (新穎的問題會激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動,培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達能力)

  6、議一議,談?wù)劚竟?jié)課你有哪些收獲

  (由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運用這種方法時,首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們在數(shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數(shù)大小時非常簡便。

  六、布置作業(yè):

  P19 A組、B組

  基礎(chǔ)好的A、B兩組都做

  基礎(chǔ)較差的同學(xué)選做A組。

初中數(shù)學(xué)八年級上冊教案3

  教學(xué)目標(biāo):

  知識與技能目標(biāo):

  1.掌握矩形的概念、性質(zhì)和判別條件.

  2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力.

  過程與方法目標(biāo):

  1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法.

  2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.

  情感與態(tài)度目標(biāo):

  1.在操作活動過程中,加深對矩形的的認(rèn)識,并以此激發(fā)學(xué)生的探索精神.2.通過對矩形的探索學(xué)習(xí),體會它的內(nèi)在美和應(yīng)用美.

  教學(xué)重點:矩形的性質(zhì)和常用判別方法的理解和掌握.

  教學(xué)難點:矩形的性質(zhì)和常用判別方法的`綜合應(yīng)用.

  教學(xué)方法:分析啟發(fā)法

  教具準(zhǔn):像框,平行四邊形框架教具,多媒體課件.

  教學(xué)過程設(shè)計:

  一.情境導(dǎo)入:

  演示平行四邊形活動框架,引入課題.

  二.講授新課:

  1.歸納矩形的定義:

  問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學(xué)生思考、回答.)

  結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形.

  八年級數(shù)學(xué)上冊教案2.探究矩形的性質(zhì):

 。1).問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)

  結(jié)論:矩形的四個角都是直角.

  (2).探索矩形對角線的性質(zhì):

  讓學(xué)生進行如下操作后,思考以下問題:(幻燈片展示)

  在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

 、.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

 、.當(dāng)∠α是銳角時,兩條對角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時呢?

 、.當(dāng)∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?

 。▽W(xué)生操作,思考、交流、歸納.)

  結(jié)論:矩形的兩條對角線相等.

 。3).議一議:(展示問題,引導(dǎo)學(xué)生討論解決.)

 、.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

  ②.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?

 。4).歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會矩形的“對稱美”.)

  矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.

  例解:(性質(zhì)的運用,滲透矩形對角線的“化歸”功能.)

  如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

  厘米.求BD與AD的長.

 。ㄒ龑(dǎo)學(xué)生分析、解答.)

  探索矩形的判別條件:(由修理桌子引出)

 。1).想一想:(學(xué)生討論、交流、共同學(xué)習(xí))

  對角線相等的平行四邊形是怎樣的四邊形?為什么?

  結(jié)論:對角線相等的平行四邊形是矩形.

  (理由可由師生共同分析,然后用幻燈片展示完整過程.)

 。2).歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)

  有一個內(nèi)角是直角的平行四邊形是矩形.

  對角線相等的平行四邊形是矩形.

  三.課堂練習(xí):(出示P98隨堂練習(xí)題,學(xué)生思考、解答.)

  四.新課小結(jié):

  通過本節(jié)課的學(xué)習(xí),你有什么收獲?

 。◣熒餐瑥闹R與思想方法兩方面小結(jié).)

  五.作業(yè)設(shè)計:P99習(xí)題4.6第1、2、3題.

  板書設(shè)計:

  4.矩形

  矩形的定義:

  矩形的性質(zhì):

  前面知識的小系統(tǒng)圖示:

  三.矩形的判別條件:

  例1

  課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學(xué)會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

初中數(shù)學(xué)八年級上冊教案4

  教學(xué)目標(biāo)

 。保J(rèn)識變量、常量.

  2.學(xué)會用含一個變量的代數(shù)式表示另一個變量.

  教學(xué)重點

 。保J(rèn)識變量、常量.

 。玻檬阶颖硎咀兞块g關(guān)系.

  教學(xué)難點

  用含有一個變量的式子表示另一個變量.

  教學(xué)過程

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.

  1.請同學(xué)們根據(jù)題意填寫下表:

  t/時 1 2 3 4 5

  s/千米

 。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.

 。常囉煤瑃的式子表示s.

  Ⅱ.導(dǎo)入新課

  首先讓學(xué)生思考上面的幾個問題,可以互相討論一下,然后回答.

  從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.

  這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的',如上例中的速度60千米/小時.

  [活動一]

 。保繌堧娪捌笔蹆r為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?

 。玻谝桓鶑椈傻南露藨覓熘匚铮淖儾⒂涗浿匚锏馁|(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?

  引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律.

  結(jié)論:

  1.早場電影票房收入:150×10=1500(元)

  日場電影票房收入:205×10=20xx(元)

  晚場電影票房收入:310×10=3100(元)

  關(guān)系式:y=10x

 。玻畳1kg重物時彈簧長度: 1×0.5+10=10.5(cm)

  掛2kg重物時彈簧長度:2×0.5+10=11(cm)

  掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)

  關(guān)系式:L=0.5m+10

  通過上述活動,我們清楚地認(rèn)識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.

  [活動二]

 。保嬕粋面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?

  2.用10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結(jié)論:

  1.要求已知面積的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關(guān)系式:r=

  2.因矩形兩組對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.

  若長為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學(xué)過的一些有關(guān)知識公式進行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.

  Ⅲ.隨堂練習(xí)

 。保徺I一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.

 。玻粋三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.

  解:1.買1支鉛筆價值1×0.2=0.2(元)

  買2支鉛筆價值2×0.2=0.4(元)

  ……

  買x支鉛筆價值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.

 。玻鶕(jù)三角形面積公式可知:

  當(dāng)高h為1cm時,面積S= ×5×1=2.5cm2

  當(dāng)高h為2cm時,面積S= ×5×2=5cm2

  … …

  當(dāng)高為hcm,面積S= ×5×h=2.5hcm2

初中數(shù)學(xué)八年級上冊教案5

  教學(xué)目標(biāo)

  一、教學(xué)知識點:

  1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

  二、能力訓(xùn)練要求:

  1.通過具體實例認(rèn)識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

  2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

  三、情感與價值觀要求

  1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

  2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進一步發(fā)展學(xué)生的數(shù)學(xué)觀.

  教學(xué)重點:旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)難點:探索旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)方法:

  1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。

  2、采用多媒體課件輔助教學(xué)。

  教學(xué)過程:

  一.巧設(shè)情景問題,引入課題

  日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?

  1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.

  2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.

  3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學(xué)們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).

  二.講授新課

  在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

  (2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的`.

  (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

  答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.

  因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

  由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.

  [例1](課本68頁例1)

 。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習(xí)

  課本P69隨堂練習(xí).

  1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結(jié)

  五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.

  結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?

  過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細觀察圖形,分析圖形,找出關(guān)系.

  結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  板書設(shè)計:

  教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。

【初中數(shù)學(xué)八年級上冊教案】相關(guān)文章:

初中數(shù)學(xué)八年級上冊教案精選5篇06-05

初中數(shù)學(xué)八年級上冊教案(5篇)02-08

初中數(shù)學(xué)八年級上冊教案5篇02-07

數(shù)學(xué)八年級上冊教案03-02

八年級上冊數(shù)學(xué)優(yōu)秀教案01-23

數(shù)學(xué)八年級上冊教案15篇03-02

數(shù)學(xué)八年級上冊教案(15篇)03-02

八年級數(shù)學(xué)上冊教案02-27

八年級上冊數(shù)學(xué)教案01-13