小學數(shù)學一元二次方程教案

時間:2023-05-04 07:13:01 小學數(shù)學教案 我要投稿
  • 相關(guān)推薦

小學數(shù)學一元二次方程教案范文

  教學目標

小學數(shù)學一元二次方程教案范文

  了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.

  1.通過設(shè)置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.

  2.一元二次方程的一般形式及其有關(guān)概念.

  3.解決一些概念性的題目.

  4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.

  重難點關(guān)鍵

  1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.

  2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

  教學過程

  一、復(fù)習引入

  學生活動:列方程.

  問題(1)《九章算術(shù)》勾股章有一題:今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?

  大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

  如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.

  整理、化簡,得:__________.

  問題(2)如圖,如果 ,那么點C叫做線段AB的黃金分割點.

  如果假設(shè)AB=1,AC=x,那么BC=________,根據(jù)題意,得:________.

  整理得:_________.

  問題(3)有一面積為54m2的長方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個正方形,那么這個正方形的邊長是多少?

  如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

  整理,得:________.

  老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.

  二、探索新知

  學生活動:請口答下面問題.

  (1)上面三個方程整理后含有幾個未知數(shù)?

  (2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?

  (3)有等號嗎?或與以前多項式一樣只有式子?

  老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

  因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

  一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.

  一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

  例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.

  解:去括號,得:

  40-16x-10x+4x2=18

  移項,得:4x2-26x+22=0

  其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.

  例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

  分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

  解:去括號,得:

  x2+2x+1+x2-4=1

  移項,合并得:2x2+2x-4=0

  其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.

  三、鞏固練習

  教材P32 練習1、2

  四、應(yīng)用拓展

  例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

  分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.

  證明:m2-8m+17=(m-4)2+1

  ∵(m-4)20

  (m-4)2+10,即(m-4)2+10

  不論m取何值,該方程都是一元二次方程.

  五、歸納小結(jié)(學生總結(jié),老師點評)

  本節(jié)課要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.

  六、布置作業(yè)

【小學數(shù)學一元二次方程教案】相關(guān)文章:

數(shù)學教案-一元二次方程05-02

數(shù)學教案-一元二次方程的解法05-02

數(shù)學《一元二次方程》教案設(shè)計12-04

《一元二次方程》數(shù)學教案(精選12篇)12-25

數(shù)學教案-一元二次方程的應(yīng)用(一)05-02

數(shù)學教案-一元二次方程的應(yīng)用(三)05-02

《一元二次方程》數(shù)學教案(精選10篇)06-26

數(shù)學教案-一元二次方程的應(yīng)用(二)05-02

一元二次方程教案01-15

數(shù)學教案-一元二次方程根與系數(shù)關(guān)系05-02