高一數(shù)學教學計劃

時間:2022-12-14 12:00:51 教學計劃 我要投稿

人教版高一數(shù)學教學計劃(通用5篇)

  時間過得真快,總在不經意間流逝,我們將帶著新的期許奔赴下一個挑戰(zhàn),是時候抽出時間寫寫教學計劃了。相信大家又在為寫教學計劃犯愁了吧,下面是小編精心整理的人教版高一數(shù)學教學計劃(通用5篇),供大家參考借鑒,希望可以幫助到有需要的朋友。

人教版高一數(shù)學教學計劃(通用5篇)

  高一數(shù)學教學計劃1

  平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。

  教學目標

 。1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。

 。2)理解直線方程幾種形式之間的內在聯(lián)系,能在整體上把握直線的方程。

 。3)掌握直線方程各種形式之間的互化。

  (4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力。

  (5)通過直線方程特殊式與一般式轉化的教學,培養(yǎng)學生靈活的思維品質和辯證唯物主義觀點。

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。

  教學建議

  1、教材分析

 。1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式。

  (2)重點、難點分析

 、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程。

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節(jié)內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用。

  直線的.點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。

 、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明。

  2、教法建議

 。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。

 。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續(xù)學習曲線方程打下基礎。

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點

 。3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉化,并加深對各種形式的理解。

 。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程。

 。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù))。

 。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養(yǎng)學生的綜合能力。

 。7)直線方程的理論在其他學科和生產生活實際中有大量的應用。教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力。

  (8)本節(jié)不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。

  高一數(shù)學教學計劃2

  教學目標

  1通過對冪函數(shù)概念的學習以及對冪函數(shù)圖象和性質的歸納與概括,讓學生體驗數(shù)學概念的形成過程,培養(yǎng)學生的抽象概括能力。

  2使學生理解并掌握冪函數(shù)的圖象與性質,并能初步運用所學知識解決有關問題,培養(yǎng)學生的靈活思維能力。

  3培養(yǎng)學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

  教學重點、難點

  重點:冪函數(shù)的性質及運用

  難點:冪函數(shù)圖象和性質的發(fā)現(xiàn)過程

  教學方法:

  問題探究法教具:多媒體

  教學過程

  一、創(chuàng)設情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關系?

  (總結:根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))

  問題2:如果正方形的邊長為a,那么正方形的面積,這里S是a的函數(shù)。問題3:如果正方體的邊長為a,那么正方體的體積,這里V是a的函數(shù)。問題4:如果正方形場地面積為S,那么正方形的邊長,這里a是S的函數(shù)問題5:如果某人s內騎車行進了km,那么他騎車的速度,這里v是t的函數(shù)。

  以上是我們生活中經常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w,s=a2,a=s,v=t-1都是自變量的若干次冪的形式。

  教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。

  冪函數(shù)的定義:一般地,我們把形如的'函數(shù)稱為冪函數(shù)(powerfunction),其中是自變量,是常數(shù)。1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念)結論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù)例1判別下列函數(shù)中有幾個冪函數(shù)?

 、賧=②y=2x2③y=x④y=x2+x⑤y=-x3⑥⑦⑧⑨(由學生獨立思考、回答)

  2冪函數(shù)具有哪些性質?研究函數(shù)應該是哪些方面的內容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內容?

  (學生討論,教師引導。學生回答。)

  3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?

  (學生小組討論,得到結論。引導學生舉例研究。結論:冪指數(shù)不同,定義域并不完全相同,應區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當n=0時,其表達式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調,當x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)

  例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x

  (學生解答,并歸納解決辦法。引導學生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導學生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應具體分析。)

  4上述函數(shù)①y=x②y=③y=x④y=x的單調性如何?如何判斷?

  (學生思考,引導作圖可得。并加上y=x和y=x-1圖象)接下來,在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1

  讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)

  教師總評:冪函數(shù)的性質

  (1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),

  (2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),

  (3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內,當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。

  5通過觀察例1,在冪函數(shù)y=xa中,當a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質?

  學生思考,教師講評:

  (1)在冪函數(shù)y=xa中,當a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內是增函數(shù)。

  (2)在冪函數(shù)y=xa中,當a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內是增函數(shù)。

  例3鞏固練習寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調性:①y=x②y=x③y=x。

  例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:

  ①0.75,0.76;

 、(-0.95),(-0.96);

 、0.23,0.24;

 、0.31,0.31

  例5簡單應用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。

  例6簡單應用2:

  已知(a+1)<(3-2a),試求a的取值范圍。

  課堂小結

  今天的學習內容和方法有哪些?你有哪些收獲和經驗?

  1、冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別2、常見冪函數(shù)的圖象和冪函數(shù)的性質。

  布置作業(yè):

  課本p.732、3、4、思考5

  高一數(shù)學教學計劃3

  一、指導思想:

  在新課程改革的教學理念下,以發(fā)展教育的觀念為指引,以學校和教導處的工作計劃為指南,改變教學觀念,改進教學方法,更新教學手段,提高教學效率,提高學生的閱讀能力、解題能力,促進學生學習態(tài)度、學習方式的轉變,培養(yǎng)學生自主學習、積極探究、樂于合作的精神,注重學生數(shù)學素養(yǎng)的提高,關注學生的思想情感和交流,培養(yǎng)學生的創(chuàng)新思維和創(chuàng)造能力,為學生的可持續(xù)發(fā)展奠定基礎。新課標理念下的政治教學活動應該不同于傳統(tǒng)的課堂教學,改變教師的教法和學生的學法是在教學活動中體現(xiàn)最新教學理念的關鍵。

  “導學案”應課堂教學改革與傳統(tǒng)教學模式的矛盾而生,它既可以將學生自主學習引入正軌,又將學生可以自主探究理解完成的知識點與題目在課下解決,這樣,課堂上教師就有足夠的時間與學生共同研究解決本節(jié)課的.重點與難點,從而提高了課堂效率。我們應該認識到改革是教學的生命,課程改革與課堂教學改革是一個不斷發(fā)展、不斷探索的過程。在這個過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發(fā)展。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標準實驗教科書·數(shù)學(A版)》必修1、必修2,根據(jù)必修1、2設計的導學案。它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發(fā)展。

  三、學情分析:

  本學期任教高一(35、36)班的數(shù)學,(35、36)班是平衡班,部分學生學習數(shù)學的熱情較高漲,比較自覺,能認真完成作業(yè),但數(shù)學層次并不相同,部分同學基礎薄弱,缺乏學習數(shù)學的方法。

  四、教學策略、教研活動:

  1、落實提高課堂效率,導學案的設計目的是為了將學生的導學案與教師的集體備課設計為一體,第一、課前預習。教師設計此部分內容之前必須針對本課題的三維目標與考綱認真?zhèn)湔n,列出本節(jié)課的知識要點,對于重難點做特殊標記,并針對預習提綱給出的內容設計預習檢測題,預習檢測題難度不易過高,與本課題的重難點相關的知識點有選擇性的錄入此處,讓學生在做此部分時不能感覺太簡單了也不能感覺無從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動。第三、課堂檢測。此處設置的題目難度深度一定比預習檢測部分要更難更深。此部分不要求所有的學生都在課前做。從此處開始分“才”完成,有能力的同學可以提前嘗試著做,做題慢的同學可以先不必看,學生按照自己的情況自行決定。第四,拓展延伸。這里出現(xiàn)的題目屬于拔高題,一般很少有學生在課前能夠做對,所以此處也不要求學生課前做,當然不排除有的同學想要挑戰(zhàn)一下,這是提倡并且大力表揚的。第五,反思總結。學生利用這部分一方面可以小結本節(jié)課的內容,另一方面可以對自己本課題從預習探究到課堂探究各個環(huán)節(jié)進行反思,便于日后改進。上課時要明確重點、難點,重點要突出,難點要分散,并且難點要解決好。課堂講新課的時間一定要控制在20分鐘之內,最好能在10分鐘之內解決問題,多給時間學生練習或進行與學習有關的活動。

  2、做到課后教學反思

  上完課之后需要思考三個問題:我這節(jié)課上得如何有沒有要糾正與改進的?有誰的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好?并在學案、備課筆記上做好記錄,為以后的教育教學提供參考。

  3、落實好備課電子化,為加快對試驗課的理解和掌握,積極探索教改進程,建立備課組資料庫,備課組成員要積極借助網絡信息收集和篩選資料存庫,發(fā)揮集體智慧,在備課組會議上整理,及時應用到具體教學中。注重學案導學,編好用好導學案。

  4、積極聽有經驗的教師的課,認真改進課堂教學上的薄弱環(huán)節(jié)。注重研究教師如何講、注重研究學生如何學,積極推進新課改,提高課堂效率。

  五、教學措施:

  1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生交流等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

  2、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣。

  3、抓住公式的推導和內在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  4、扎實基礎的同時重視數(shù)學應用意識及應用能力的培養(yǎng)。

  5、落實抓好平時的一周一限時訓練,一周一綜合,注重知識的滲透

  6、落實競賽輔導:主要利用下午第三節(jié)時間,一個星期進行一至兩次輔導。

  高一數(shù)學教學計劃4

  一、指導思想

  準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數(shù)學思想和方法.針對學生實際,不斷研究數(shù)學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養(yǎng)學生的創(chuàng)新精神,運用數(shù)學的意識和能力,奠定他們終身學習的基礎.

  二、高一上冊數(shù)學教學教材特點:

  我們所使用的教材是人教版《普通高中課程標準實驗教科書·數(shù)學(A版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關系,體現(xiàn)基礎性、時代性、典型性和可接受性等,具有如下特點:

  1.“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情.

  2.“問題性”:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神.

  3.“科學性”與“思想性”:通過不同數(shù)學內容的聯(lián)系與啟發(fā),強調類比、化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神.

  4.“時代性”與“應用性”:以具有時代感和現(xiàn)實感的素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識.

  三、高一上冊數(shù)學教學教法分析:

  1.選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產生對數(shù)學的親切感,引發(fā)學生“看個究竟”的沖動,以達到培養(yǎng)其興趣的目的.

  2.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學生的思考和探索活動,切實改進學生的`學習方式.

  3.在教學中強調類比、化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣.

  四、學情分析

  高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望.我們要從學生的認識水平和實際能力出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡.從高一起就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法.

  五、高一上冊數(shù)學教學教學措施:

  1、激發(fā)學生的學習興趣.由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步.

  2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考.

  高一數(shù)學教學計劃5

  一、學情分析

  這節(jié)課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣,是以后學習空間向量等內容的基礎。

  二、教學目標

  1.讓學生經歷用類比的數(shù)學思想方法探索空間直角坐標系的建立方法,進一步體會數(shù)學概念、方法產生和發(fā)展的過程,學會科學的思維方法。

  2.理解空間直角坐標系與點的坐標的意義,掌握由空間直角坐標系內的點確定其坐標或由坐標確定其在空間直角坐標系內的點,認識空間直角坐標系中的點與坐標的關系。

  3.進一步培養(yǎng)學生的空間想象能力與確定性思維能力。

  三、教學重點

  在空間直角坐標系中點的坐標的確定。

  四、教學難點

  通過建立空間直角坐標系利用點的坐標來確定點在空間內的位置

  五、教學過程

  (一)、問題情景

  1.確定一個點在一條直線上的位置的方法。

  2.確定一個點在一個平面內的位置的方法。

  3.如何確定一個點在三維空間內的位置?

  例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?

  在學生思考討論的基礎上,教師明確:確定點在直線上,通過數(shù)軸需要一個數(shù);確定點在平面內,通過平面直角坐標系需要兩個數(shù)。那么,要確定點在空間內,應該需要幾個數(shù)呢?通過類比聯(lián)想,容易知道需要三個數(shù)。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個墻面的距離即可。

  (此時學生只是意識到需要三個數(shù),還不能從坐標的角度去思考,因此,教師在這兒要重點引導)

  教師明晰:在地面上建立直角坐標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數(shù)表示物體離地面的高度,即需第三個坐標z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個電燈的位置(如圖26-3)。

  這樣,仿照初中平面直角坐標系,就建立了空間直角坐標系O-xyz,從而確定了空間點的位置。

  (二)、建立模型

  1.在前面研究的基礎上,先由學生對空間直角坐標系予以抽象概括,然后由教師給出準確的定義。

  從空間某一個定點O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標系O-xyz,點O叫作坐標原點,x軸、y軸、z軸叫作坐標軸,這三條坐標軸中每兩條確定一個坐標平面,分別稱為xOy平面,yOz平面,zOx平面。

  教師進一步明確:

  (1)在空間直角坐標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標系為右手坐標系,課本中建立的坐標系都是右手坐標系。

  (2)將空間直角坐標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的,這樣,三條軸上的單位長度直觀上大致相等。

  2.空間直角坐標系O-xyz中點的坐標。

  思考:在空間直角坐標系中,空間任意一點A與有序數(shù)組(x,y,z)有什么樣的對應關系?

  在學生充分討論思考之后,教師明確:

  (1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數(shù)軸上的坐標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數(shù)組(x,y,z)。

  (2)反之,對任意一個有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標分別是x,y,z,再分別過這些點作垂直于各自所在的坐標軸的平面,這三個平面的交點就是所求的點A.

  這樣,在空間直角坐標系中,空間任意一點A與有序數(shù)組(x,y,z)之間就建立了一種一一對應關系:A(x,y,z)。

  教師進一步指出:空間直角坐標系O-xyz中任意點A的坐標的概念

  對于空間任意點A,作點A在三條坐標軸上的射影,即經過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數(shù)軸上的坐標依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點A的`坐標,記為A(x,y,z)。

  (三)、例題與練習

  1.課本135頁例1.

  注意:在分析中緊扣坐標定義,強調三個步驟,第一步從原點出發(fā)沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。

  2.課本135頁例2

  探究:(1)在空間直角坐標系中,坐標平面xOy,xOz,yOz上點的坐標有什么特點?

  (2)在空間直角坐標系中,x軸、y軸、z軸上點的坐標有什么特點?

  解:(1)xOy平面、xOz平面、yOz平面內的點的坐標分別形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x軸、y軸、z軸上點的坐標分別形如(x,0,0),(0,y,0),(0,0,z)。

  3.已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

  注意:此題可以由學生口答,教師點評。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標系,那么各頂點的坐標又是怎樣的呢?

  得出結論:建立不同的坐標系,所得的同一點的坐標也不同。

  [練習]

  1.在空間直角坐標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2.已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

  3.寫出坐標平面yOz上yOz平分線上的點的坐標滿足的條件。

  (四)、拓展延伸

  分別寫出點(1,1,1)關于各坐標軸和各個坐標平面對稱的點的坐標。

  六、評價設計

  1、練習:課本P136.1、2、3

  2、課堂作業(yè):課本P138.1、2

【高一數(shù)學教學計劃】相關文章:

數(shù)學高一教學計劃03-10

高一數(shù)學教學計劃12-24

高一數(shù)學的教學計劃04-04

高一數(shù)學教學計劃12-30

高一數(shù)學教學計劃優(yōu)秀10-26

關于高一數(shù)學教學計劃01-29

高一數(shù)學教學教學計劃02-06

高一數(shù)學的教學計劃通用10-12

高一數(shù)學教學計劃(15篇)12-26

高一數(shù)學教學計劃15篇12-24