高一數(shù)學(xué)教學(xué)計劃

時間:2022-12-24 19:08:43 教學(xué)計劃 我要投稿

高一數(shù)學(xué)教學(xué)計劃精選15篇

  日子如同白駒過隙,又迎來了一個全新的起點,立即行動起來寫一份計劃吧。計劃到底怎么擬定才合適呢?以下是小編幫大家整理的高一數(shù)學(xué)教學(xué)計劃,歡迎大家借鑒與參考,希望對大家有所幫助。

高一數(shù)學(xué)教學(xué)計劃精選15篇

高一數(shù)學(xué)教學(xué)計劃1

  一、教學(xué)分析

  1、分析教材

  本章教材整體主要分成三大部分:

  (1)、圓的標(biāo)準(zhǔn)方程與一般方程;

  (2)、直線與圓、圓與圓的位置關(guān)系;

  (3)、空間直角坐標(biāo)系以及空間兩點間的距離公式。

  圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時,仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識,以便為今后用坐標(biāo)法研究空間幾何對象奠定基礎(chǔ)。這些知識是進一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。

  2、分析學(xué)生

  高中一年級的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識,只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時抓住問題的本質(zhì),研究細致思考,規(guī)范得出解答,體現(xiàn)運動變化,對立統(tǒng)一的思想

  3、教學(xué)重點與難點

  重點:圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認識。

  難點:直線與圓的方程的應(yīng)用;會求解簡單的.直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。

  二、教學(xué)目標(biāo)

  1、掌握圓的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。

  2、掌握直線與圓的位置關(guān)系的判定。

  3、在進一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。

  4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實際思想。

  三、教學(xué)策略

  1、教學(xué)模式

  本節(jié)內(nèi)容是運用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的

  教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識和基本能力,培養(yǎng)積極探索和團結(jié)協(xié)作的科學(xué)精神。

  2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源

  采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動形象的演示(尤其是動畫效果)對提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機動性得到加強。

  四、對內(nèi)容安排的說明

  本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。

  1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動點與定點間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點所滿足的幾何條件,求出點的坐標(biāo)所滿足的曲線方程。

  通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的特點,也就是坐標(biāo)法。始終強調(diào)曲線方程與曲線圖像之間的一一對應(yīng)。這一思想應(yīng)該貫穿于整個圓的教學(xué)。

  2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個方面著手:

  (1)。兩條曲線有無公共點,等價于由它們方程聯(lián)立的方程組有無實數(shù)解。方程組有幾組實數(shù)解,這兩條曲線就有幾個公共點;方程組沒有實數(shù)解,這兩條曲線就沒有公共點。

  (2)。運用平面幾何知識,把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。

  3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點和坐標(biāo)、曲線和方程聯(lián)系起來,實現(xiàn)形和數(shù)的統(tǒng)一。

  用坐標(biāo)法解決幾何問題時,先用坐標(biāo)和方程表示相應(yīng)的幾何對象,然后對坐標(biāo)和方程進行代數(shù)討論;最后再把代數(shù)運算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運算,解決代數(shù)問題;

  第三步:把代數(shù)運算結(jié)果翻譯成幾何結(jié)論。

  五、教學(xué)評價

 、暹^程性評價

  1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計的問題要照顧好、中、差。

  2、對于方程的推導(dǎo)運用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進行檢測反饋

 、娼K結(jié)性評價

  1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會和感想。

  2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實學(xué)生為主體),讓學(xué)生認真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。

高一數(shù)學(xué)教學(xué)計劃2

  一、指導(dǎo)思想

  準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。

  二、教學(xué)建議

  1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。

  2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。

  3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。

  4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。

  5、落實課外活動的內(nèi)容。組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容。

  三、教學(xué)內(nèi)容

  第一章集合與函數(shù)概念

  1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。

  2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

  3.理解集合之間包含與相等的含義,能識別給定集合的子集。

  4.在具體情境中,了解全集與空集的含義。

  5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。

  6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

  7.能使用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。

  8.通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。

  9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。

  10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。

  11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。

  12.學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。

  課時分配(14課時)

  第二章基本初等函數(shù)(I)

  1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。

  2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。

  3.理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。

  4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。

  5.理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運算的作用。

  6.通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的'概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點。

  7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。

  課時分配(15課時)

  第三章函數(shù)的應(yīng)用

  1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。

  根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。

  2.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。

  3.收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。

  4.根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進行交流。

  課時分配(8課時)

3.1.1



方程的根與函數(shù)的零點



約1課時



10月25日



3.1.2



用二分法求方程的近似解



約2課時



10月26日27日



3.2.1



幾類不同增長的函數(shù)模型



約2課時



10月30日



|



11月3日



3.2.2



函數(shù)模型的應(yīng)用實例



約2課時





小結(jié)



約1課時



  考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點、難點、易錯點,各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進,取得優(yōu)異的成績。

高一數(shù)學(xué)教學(xué)計劃3

  一、活動開展情景

  在我縣,今年的教學(xué)主體是“有效教學(xué)”,為此,我組在開展教研活動時也是緊緊圍繞這一主題進行開的。在本學(xué)期內(nèi),我組主要開展過以下活動:

  1、備課。本學(xué)期備課的形式主要是一個人備課為主,團體備課為輔。具體流程為個人備課→團體備課→個人備課,簡稱三級備課。

  2、公開課。本學(xué)期的公開課主要是以每位教師不低于一次公開課的標(biāo)準(zhǔn)來執(zhí)行的。公開課的開展形式與以往也有所不一樣,以往的公開課僅有聽課和評課兩個環(huán)節(jié),忽視了說課環(huán)節(jié)。但本學(xué)期卻是把以往忽視了的說課環(huán)節(jié)也補上了,流程上將說課環(huán)節(jié)放在課前,構(gòu)成了課前說課→聽課授課→評課議課的模式。

  3、課賽。本學(xué)期我組共參加過校外課賽一人次,獲得三等獎一人次。校內(nèi)不設(shè)課賽活動。

  4、示范課。本學(xué)期我組上過示范課共計四人次,校內(nèi)示范課三人次,校外示范課1人次。

  5、數(shù)學(xué)競賽。本學(xué)期我組共組織開展過數(shù)學(xué)競賽一次,參賽學(xué)生達50余人,占全校學(xué)生總數(shù)的近10%。向?qū)W校申請獲得專項資金710元,受益學(xué)生37人。頒發(fā)“優(yōu)秀輔導(dǎo)教師”榮譽稱號三人次。

  6、學(xué)校文化建設(shè)。本學(xué)期我組特向?qū)W校申請宣傳欄展板一塊(近3平方米),在宣傳和展

  示我組的相關(guān)活動照片以及文件精神的同時,也在完善我校的學(xué)校文化建設(shè)。

  7、階段性教學(xué)質(zhì)量反饋座談會。本學(xué)期共開展過兩次這類會議。

  8、其他活動。外出培訓(xùn)學(xué)習(xí)四人次,網(wǎng)絡(luò)培訓(xùn)學(xué)習(xí)6人次。全組成員外出交流學(xué)習(xí)兩次,其他派代表外出交流學(xué)習(xí)三次。

  二、活動成效

  1、促進了教師隊伍的建設(shè)和完善。本學(xué)期我組教師在以團隊合作及個人努力拼搏相得益彰的結(jié)合下,經(jīng)過以上一系列的活動加強了師師之間、師生之間、生生之間的溝通協(xié)調(diào),再加以學(xué)校對本組的大力支持,本學(xué)期我組對教師隊伍的建設(shè)取得了必須的成效。

  2、開拓了教師的視野,提升了團隊的師資力量。經(jīng)過外出培訓(xùn)學(xué)習(xí),網(wǎng)絡(luò)學(xué)習(xí)以及與其他學(xué)校開展教研交流活動,不但開拓了我組教師的視野,同時也提升了我組教師的專業(yè)素養(yǎng)。

  3、促進教師的個人成長與團隊合作精神。經(jīng)過開展團體備課、公開課、示范課以及課賽等活動,不但促進了我組教師的個人成長,同時也加強了我組的團隊合作精神。

  4、構(gòu)成了良好的競爭觀念和大局意識。經(jīng)過開展課賽活動和設(shè)立“優(yōu)秀輔導(dǎo)教師”獎,在團隊之間有了競爭觀念,同時也經(jīng)過績效的捆綁使得組內(nèi)成員有了大局意識。

  三、存在問題

  1、缺乏領(lǐng)導(dǎo)藝術(shù)和管理本事。在我校數(shù)學(xué)組成員中,我屬最年輕的數(shù)學(xué)教師之一,自然在管理的過程中對很多老教師心存芥蒂,這是心理隔閡問題;很難做到在對老教師十分尊重的`同時又讓他們對自我的主張很服從,這是本事問題,也是領(lǐng)導(dǎo)藝術(shù)問題;很難做到讓年輕教師彰顯個性的同時又讓他們能夠嚴格約束自我,這是溝通問題。

  2、個人精力有限。本人在擔(dān)任我校數(shù)學(xué)教研組的同時還承擔(dān)著兩個畢業(yè)班的數(shù)學(xué)教學(xué)工作和一個畢業(yè)班的班主任工總,工作任務(wù)較為繁重。所以,各項工作難免會出現(xiàn)百密而一疏的漏洞。

  3、缺乏組織和管理實踐經(jīng)驗。參加工作才一年半就開始擔(dān)任這樣的職務(wù),組織管理一群比自我大的成年人,這是零起點,無從談及組織和管理經(jīng)驗。唯有摸著石頭過河,邊工作邊總結(jié),逐步積累這方面的實踐經(jīng)驗。

  四、努力方向

  對于目前存在的問題,日后改善的措施還是以人為本,尊重同事,在虛心向經(jīng)驗豐富異常以往從事過這方面工作的老教師請教的同時,也要加強與年輕教師的溝通,多聽取他們的意見提議,努力提高自我的業(yè)務(wù)水平和管理本事,不斷學(xué)習(xí)新的管理理念,提高自我的管理藝術(shù)和組織本事。

高一數(shù)學(xué)教學(xué)計劃4

  一、指導(dǎo)思想:

  遵循“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想,使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會提高的需要。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有如下特點:

  1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)活力。

  2、“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。

  3、“科學(xué)性”與“思想性”:經(jīng)過不一樣數(shù)學(xué)資料的聯(lián)系與啟發(fā),強調(diào)類比、化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維本事,培育理性精神。

  4、“時代性”與“應(yīng)用性”:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。

  三、教法分析:

  1、選取與資料密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的'沖動,以到達培養(yǎng)其興趣的目的。

  2、經(jīng)過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改善學(xué)生的學(xué)習(xí)方式。

  3、在教學(xué)中強調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  四、學(xué)情分析:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長。應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望。我們要從學(xué)生的認識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  五、教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

  2、注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計劃5

  一、教材教法分析

  本節(jié)課是x教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(x)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時,通過對《xx》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《xx》和選修內(nèi)容《xx》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。

  二、學(xué)情分析

  一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。

  三、教學(xué)目標(biāo)

  1、知識與技能

 、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性。

 、诹私饪臻g直角坐標(biāo)系,掌握空間點的.坐標(biāo)的確定方法和過程。

 、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用。

  2、過程與方法

 、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究。

  ②類比學(xué)習(xí),循序漸進。

  3、情感態(tài)度與價值觀

  通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間。

  4、教學(xué)重點

  本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為“空間直角坐標(biāo)系的理解”。

  5、教學(xué)難點

  先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置?偟脕碚f,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。

高一數(shù)學(xué)教學(xué)計劃6

  教材分析:

  解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點,也是學(xué)習(xí)的難點。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實際思維及思路。

  學(xué)情分析:

  初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗。同時,對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。

  學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強的學(xué)習(xí)動機——考上大學(xué),盡管是外在的誘因。

  教學(xué)目標(biāo):

  ①知識與技能

  熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會兩種方法求出一元二次不等式的解集

 、谶^程與方法

  經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會學(xué)習(xí)

  ③情感、態(tài)度及價值觀

  在上述過程中,體驗成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強了學(xué)習(xí)的內(nèi)在動機

  教學(xué)重點:

  一元二次不等式的解法

  教學(xué)難點:

  解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”

  反思:

  今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設(shè)計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個環(huán)節(jié):

  首先,對平面曲線上點的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進而對它們的取值變化情況感到費解。

  其次,是差生的思維能力尚處于“經(jīng)驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標(biāo)取值范圍只能是“一籌莫展”。

  在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學(xué)科任何年齡段的任何知識。

  教學(xué)程序:

  一、復(fù)習(xí)一元一次不等式及不等式組的解法

  以題組形式設(shè)計習(xí)題

 、2x+3>7

 、诓坏仁浇M

  ③ax>b

  二、創(chuàng)設(shè)二次不等式的生活背景實例,引入課題

  采用課本上的實例,有關(guān)網(wǎng)絡(luò)收費問題

  三、一元二次不等式的.解法探索

  (1)

  在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。

  由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導(dǎo)學(xué)生自行歸納、體驗及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計相應(yīng)習(xí)題。

  (2)

  采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學(xué)生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴密。

  之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵他們通過或獨立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。

  反思:根據(jù)課堂反饋,二個班級大約有70%的同學(xué)能夠勝任這個任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進行了一次講解,特別加強了對“識圖”環(huán)節(jié)的講解力度,力求突破難點。

  四、練習(xí)環(huán)節(jié)

  可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強化練習(xí),“力求熟能生巧”,達到自動化的水平。

  課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨立練習(xí)。

  五、課堂小結(jié)

  知識,思想、方法及感悟等

  六、課后作業(yè)

  ①作業(yè)設(shè)計:分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組

 、谡n外思考題:

  1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同

  2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍

  變式一:戓將R改為空集,此時結(jié)論如何

  變式二:仿上,自己改編條件,并解之。

  反思:課外思考題的設(shè)計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時,加強變式教學(xué),可以充分拓展習(xí)題的潛在價值,期望實現(xiàn)“舉一反三”的目標(biāo)。

高一數(shù)學(xué)教學(xué)計劃7

  一.基本情況分析:

  1.學(xué)生情況分析:4個重點班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高.普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于強化基礎(chǔ)知識,培養(yǎng)學(xué)生的計算能力,提高思維能力,爭取每堂課教學(xué)一個知識點,掌握一個知識點。

  2.教材分析:本學(xué)期時間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點,線面的位置關(guān)系,直線與方程,圓與方程。

  二.工作要點及措施

  1、教案學(xué)案一體化繼續(xù)探索適合我校學(xué)生實際的課堂教學(xué)模式,為發(fā)揮學(xué)生的主體作用,切實提高課堂效率,本學(xué)期推行三圖四化的使用,基本操作辦法是,提前一天把學(xué)案發(fā)給學(xué)生,讓學(xué)生課前預(yù)習(xí),即先自主學(xué)習(xí),在課堂上,讓學(xué)生充分活動,在教師的問題引導(dǎo)下,積極思考,同學(xué)之間認真討論,確定問題的解決的方法途徑和結(jié)論,教師在課堂上做好問題的引導(dǎo)和問題的變式,想方設(shè)法的激勵學(xué)生思考問題,在學(xué)生回答問題后對學(xué)生進行肯定和鼓勵。

  三圖四化工廠的設(shè)計

  組內(nèi)成員先自行設(shè)計出學(xué)案初稿,然后經(jīng)備課組全體成員集體教研、討論,確定學(xué)案的定稿。由于課型不同,學(xué)案的環(huán)節(jié)也相應(yīng)存在著不同,但每個學(xué)案都應(yīng)包括學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點、導(dǎo)學(xué)問題、學(xué)法指導(dǎo)、達標(biāo)訓(xùn)練等環(huán)節(jié),在設(shè)計中要把握問題的難度,在操作中低重心運行,為保證高考升學(xué)取得大面積豐收,教學(xué)要面向全體學(xué)生,教學(xué)要求要低一些,讓后進生能接受,調(diào)動他們的學(xué)習(xí)積極性,促進后進生的轉(zhuǎn)變,由此來督促中上等學(xué)生的學(xué)習(xí)。

  (1)學(xué)習(xí)目標(biāo)的制定。學(xué)習(xí)目標(biāo)要明確,學(xué)生能一目了然,切忌學(xué)習(xí)目標(biāo)過多,讓學(xué)生在課堂的開始就引起消極情緒。

  (2)導(dǎo)學(xué)問題的設(shè)計。導(dǎo)學(xué)問題的設(shè)計不是把課本所學(xué)知識變成問題然后簡單邏列,而是根據(jù)教材的特點,學(xué)生的實際水平能力,聯(lián)系社會現(xiàn)實問題,設(shè)計成不同層次的問題。問題的設(shè)計和問題的形式靈活多樣,可以是問題式、簡答式等等,根據(jù)學(xué)習(xí)內(nèi)容的不同采用不同的形式。

  (3)學(xué)法指導(dǎo)。

  學(xué)法指導(dǎo)也就是學(xué)習(xí)方法、活動方式的指導(dǎo)及疑難問題的提示等。學(xué)生對每節(jié)課知識掌握的如何,學(xué)習(xí)方法的指導(dǎo)起到了關(guān)鍵作用。本環(huán)節(jié)的目的`是讓學(xué)生在平時的學(xué)習(xí)過程中隨時掌握解決問題的方法,逐步由學(xué)會變?yōu)闀䦟W(xué)。

  (4)達標(biāo)訓(xùn)練的設(shè)計。為了使學(xué)到的知識及時得到鞏固、消化和吸收,進而轉(zhuǎn)化為能力,要精心設(shè)計有階梯性、層次性的達標(biāo)訓(xùn)練,要注意此環(huán)節(jié)應(yīng)面向全體學(xué)生,發(fā)展各類學(xué)生的潛能,讓每個學(xué)生在每節(jié)課后都有收獲,都有成就感。

  2、集體備課我們要克服以往集體備課中存在的問題,真正提高說課質(zhì)量,使集體備課對每位教師尤其是新教師起到有效的指導(dǎo)和幫助作用,將集體備課落到實處。具體做法如下:

  (1)提前確定教學(xué)進度、中心發(fā)言人(詳情見附表)及說課時間(每周五下午6、7節(jié))。

  (2)中心發(fā)言人針對本年級學(xué)生實際情況,精心設(shè)計課堂結(jié)構(gòu),精選例題和作業(yè),設(shè)計好學(xué)案,可以適當(dāng)多選些題目,文科生在此基礎(chǔ)上可進行適當(dāng)刪改(本學(xué)期在教學(xué)內(nèi)容上文理沒有什么差別),要注意低起點、多重復(fù)。說課時,要說透教材、教法、教學(xué)重點和難點,例題要說明選題意圖,要有詳細的解題過程、注意事項等,特別要在教學(xué)方法的改進上多下功夫,要從學(xué)生現(xiàn)有的認知水平出發(fā),設(shè)想學(xué)生可能出現(xiàn)的種種問題及應(yīng)對措施。作業(yè)要有針對性,層次性,既鞏固課上的知識點、題型,又要有一定的思維延展性,使文理科的學(xué)生在作業(yè)上有一定的區(qū)分度,使學(xué)有余力的學(xué)生有一個鍛煉、培養(yǎng)思維能力的平臺。

  (3)每位教師在說課前都要做好準(zhǔn)備,認真研究教材教法知道要說的是什么內(nèi)容,包括哪些基礎(chǔ)知識和基本題型,了解本部分內(nèi)容涉及的數(shù)學(xué)思想方法,做完說課稿上的例題、習(xí)題、作業(yè),對例題的講解和其中蘊含的數(shù)學(xué)思想和解題技巧、計算技巧形成一個明確的認識,并寫好初備提綱,以備說課時作出必要的補充和自己的見解。每位教師可以對說課稿進行補充,也可就初備中發(fā)現(xiàn)的問題提問,然后全組教師進行交流,以改進教法、增刪例題和作業(yè),使說課稿更加完善和實用。

  3、集體聽評課為提高每位教師的教育教學(xué)水平,依據(jù)學(xué)校教學(xué)計劃,青年教師每周聽課1節(jié),其他教師月至少2節(jié)。每周進行一次集體聽評課活動(詳情見附表)。評課時不僅要說優(yōu)點,更要說不足和遺憾,提出意見和建議。當(dāng)局者迷,這樣做有利于授課教師認清自身存在的問題,以改進教學(xué),這也是對授課教師負責(zé)任的一種表現(xiàn)。通過評他人的課,對比查找自己存在的問題,有利于改進教學(xué)。

  4、教案:要寫明教學(xué)時間、課題、教學(xué)重點難點、教學(xué)方法、教學(xué)過程等。集體說課后,每位教師都要結(jié)合本班學(xué)生實際情況,精心設(shè)計課堂45分鐘應(yīng)如何分配到各個教學(xué)環(huán)節(jié),要提問什么問題,提問誰,例題怎樣分析,滲透什么思想方法。教學(xué)過程要有復(fù)習(xí)回顧、導(dǎo)入設(shè)計、師生活動、例題的分析、作業(yè)設(shè)計與小結(jié)等。每位教師上完課之后都要思考兩個問題:我這節(jié)課上得如何?怎樣上這節(jié)課更好、最好?并結(jié)合課堂上出現(xiàn)的各種情況,認真寫好教學(xué)反思,或總結(jié)經(jīng)驗,或反思失誤,或記錄靈感,為今后教學(xué)和科研工作積累最實用的資料。

  5、上課要重視三圖四化的應(yīng)用,要用好學(xué)案,設(shè)計整個課堂的教學(xué)環(huán)節(jié);

  (1)我們要率先遵守課堂常規(guī),及時到位候課,提醒學(xué)生做好上課的準(zhǔn)備。上課過程中,語言要簡潔生動,板書、解題、作圖要規(guī)范嚴謹,不要出現(xiàn)知識性錯誤。身教勝于言教,我們怎樣要求學(xué)生,就應(yīng)比他們做地更好,用自身的行動為學(xué)生作好示范。

  (2)把主動權(quán)交給學(xué)生,多作主持人,少當(dāng)播音員。學(xué)生能做的事,就交給學(xué)生做,不要好心辦壞事。但必須指出,對于學(xué)生理解有困難、易混、易錯的知識和題目,一定要多講、講透,千萬不要為了形式上的留時間、留空間造成學(xué)生在知識和方法上出現(xiàn)漏洞。

  (3)針對學(xué)生存在的問題,繼續(xù)加強對學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),包括如何記筆記,記什么;培養(yǎng)先復(fù)習(xí)再做作業(yè)的習(xí)慣;獨立思考的習(xí)慣;遇到困難查教材、查筆記的習(xí)慣等。

  6、作業(yè)批改批改作業(yè)前,全組成員要校對答案,匯總解題方法。批改作業(yè)的基本要求是全批全改、及時準(zhǔn)確。對錯誤較多的題目,認真分析原因,集中講評,并督促他們改正;對學(xué)生書寫、計算、作業(yè)整理方面存在的問題,要進行學(xué)法指導(dǎo);認真書寫評語,既要指出問題,又要多些鼓勵

  7、坐班:全組教師嚴格遵守學(xué)校的坐班紀(jì)律,保持辦公室的安靜,搞好辦公室的衛(wèi)生,責(zé)任到人,全組教師共同努力,創(chuàng)設(shè)良好的辦公環(huán)境,提高干事的效率。

高一數(shù)學(xué)教學(xué)計劃8

  教學(xué)目標(biāo):

  知識與技能通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行簡單的應(yīng)用.

  過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì).

  情感、態(tài)度、價值觀體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性.

  教學(xué)重點:

  重點從五個具體冪函數(shù)中認識冪函數(shù)的一些性質(zhì).

  難點畫五個具體冪函數(shù)的圖象并由圖象概括其性質(zhì),體會圖象的變化規(guī)律.

  教學(xué)程序與環(huán)節(jié)設(shè)計:

  材料一:冪函數(shù)定義及其圖象.

  一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

  冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種形式定義的函數(shù),引導(dǎo)學(xué)生注意辨析.

  下面我們舉例學(xué)習(xí)這類函數(shù)的一些性質(zhì).

  作出下列函數(shù)的圖象:利用所學(xué)知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所圖象,體會冪函數(shù)的變化規(guī)律.

  定義域

  值域

  奇偶性

  單調(diào)性

  定點

  師:引導(dǎo)學(xué)生應(yīng)用畫函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性.

  師生共同分析,強調(diào)畫圖象易犯的錯誤.

  材料二:冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(1,1);

  (2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時,冪函數(shù)的圖象下凸;當(dāng) 時,冪函數(shù)的圖象上凸;

  (3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

  例1、求下列函數(shù)的定義域;

  例2、比較下列兩個代數(shù)值的`大。

  [例3]討論函數(shù) 的定義域、奇偶性,作出它的圖象,并根據(jù)圖象說明函數(shù)的單調(diào)性.

  練習(xí)

  1.利用冪函數(shù)的性質(zhì),比較下列各題中兩個冪的值的大。

  2.作出函數(shù) 的圖象,根據(jù)圖象討論這個函數(shù)有哪些性質(zhì),并給出證明.

  3.作出函數(shù) 和函數(shù) 的圖象,求這兩個函數(shù)的定義域和單調(diào)區(qū)間.

  4.用圖象法解方程:

  1.如圖所示,曲線是冪函數(shù) 在第一象限內(nèi)的圖象,已知 分別取 四個值,則相應(yīng)圖象依次為:.

  2.在同一坐標(biāo)系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律?

高一數(shù)學(xué)教學(xué)計劃9

 、瘢虒W(xué)內(nèi)容解析

  本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點是指數(shù)函數(shù)的圖像與性質(zhì).

  這是指數(shù)函數(shù)在本章的位置.

  指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗數(shù)學(xué)思想與方法應(yīng)用的過程.

  指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識還有著一定的現(xiàn)實意義.

 、颍虒W(xué)目標(biāo)設(shè)置

  1.學(xué)生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號表示,建構(gòu)指數(shù)函數(shù)的概念.

  2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個冪的大小.

  3.學(xué)生運用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法.

  4.在探究活動中,學(xué)生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

 、螅畬W(xué)生學(xué)情分析

  授課班級學(xué)生為南京師大附中實驗班學(xué)生.

  1.學(xué)生已有認知基礎(chǔ)

  學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對函數(shù)有了初步的認識.學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗.學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

  2.達成目標(biāo)所需要的認知基礎(chǔ)

  學(xué)生需要對研究的目標(biāo)、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.

  3.難點及突破策略

  難點:1. 對研究函數(shù)的一般方法的認識.

  2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

  突破策略:

  1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認識研究的目標(biāo)與手段.

  2.組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思.

  3.對猜想進行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

 、簦虒W(xué)策略設(shè)計

  根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認識研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

  學(xué)生的自主學(xué)習(xí),具體落實在三個環(huán)節(jié):

  (1)建構(gòu)指數(shù)函數(shù)概念時,學(xué)生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念.

  (2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時,學(xué)生自選底數(shù),開展自主研究,并通過匯報交流相互提升.

  (3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

  研究函數(shù)的性質(zhì),可以從形和數(shù)兩個方面展開.從圖形直觀和數(shù)量關(guān)系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時應(yīng)用函數(shù)解析式輔以必要的說明和證明.

  Ⅴ.教學(xué)過程設(shè)計

  1.創(chuàng)設(shè)情境建構(gòu)概念

  師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個變量之間的關(guān)系.你能用函數(shù)的觀點分析下面的例子嗎?

  師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)

  [情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應(yīng)的細胞個數(shù)為y,如何描述這兩個變量的關(guān)系?

  [情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個變量的關(guān)系?

  [師生活動]引導(dǎo)學(xué)生分析,找到兩個變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

  師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?

  〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?

  [設(shè)計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號表示.初步得到y(tǒng)=ax這個形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴充到實數(shù)后,關(guān)注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

  [師生活動]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

  [教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn).進而提出這類函數(shù)一般形式y(tǒng)=ax.

  方案1:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

  師:板書學(xué)生舉例(停頓),好像有不同意見.

  生:底數(shù)不能取負數(shù).

  師:為什么?

  生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.

  師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,我們希望這些函數(shù)的定義域就是R.

  (若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)

  師:這些函數(shù)有什么共同特點?

  生:都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.

  (若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會基本初等函數(shù)的作用.)

  師:具備上述特征的函數(shù)能否寫成一般形式?

  生:可以寫成y=ax(a>0).

  師:當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

  方案2:

  生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

  師:板書學(xué)生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

  生:函數(shù)y=0.5x,y= x,…

  師:這些函數(shù)的'自變量是什么?它們有什么共同特點?

  生:(可用文字語言或符號語言概括)都有指數(shù)運算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

  師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

  生:底數(shù)不能取負數(shù).

  師:為什么?

  生:如果底數(shù)取負數(shù)或0,x就不能取任意實數(shù)了.

  師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時,函數(shù)就是常數(shù)函數(shù)y=1.對于這個函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個新函數(shù).(出示指數(shù)函數(shù)定義)

  [階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.

  [意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.

  2.實驗探索匯報交流

  (1)構(gòu)建研究方法

  師:我們定義了一個新的函數(shù),接下來,我們研究什么呢?

  生:研究函數(shù)的性質(zhì).

  〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

  [設(shè)計意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對函數(shù)有了初步的認識.在此認知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個性,提供自主探究的平臺,通過匯報交流活動達成共識實現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

  [師生活動]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

  [教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識和經(jīng)驗,在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.

  師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

  生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

  師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

  生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

  生:先研究幾個具體的指數(shù)函數(shù),再研究一般情況.

  師:板書“畫圖觀察”,“取特殊值”

  (若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會有不同.一次函數(shù)y=kx(k≠0)中,一次項系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個值,那我們怎么辦呢?)

  (若有學(xué)生通過對y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

  [意圖分析]學(xué)習(xí)的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機會,逐漸學(xué)會研究問題,促進能力發(fā)展.

  (2)自主探究匯報交流

  師:我們確定了要研究的對象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

  〖問題3選取數(shù)據(jù),畫出圖象,觀察特點,歸納性質(zhì).

  [設(shè)計意圖]若直接規(guī)定底數(shù)取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對于圖象的認識是被動的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認知水平的差異,仍可能會造成部分學(xué)生被動接受.學(xué)生自主選擇底數(shù),雖有得到片面認識的可能,但通過討論交流,學(xué)生能相互驗證結(jié)論,仍能得到正確認識.并且學(xué)生能在過程中體會數(shù)據(jù)如何選擇,了解研究方法.

  由于描點作圖時列舉點的個數(shù)的限制,學(xué)生對x→∞時函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個數(shù)的限制,學(xué)生對于歸納的結(jié)論缺乏一般性的認識.教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗證猜想.

  數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節(jié)課的重點是通過對指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動學(xué)生參與研究的每個過程,得到直接體驗.

  [師生活動]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

  [教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對結(jié)論進行適當(dāng)?shù)恼f明,進而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動態(tài)圖象驗證猜想,促進學(xué)生體會數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強加于學(xué)生.對于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

  生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

  師:(巡視,必要時參與討論,及時提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵學(xué)生交流,請學(xué)生匯報.)有條理地整理一下結(jié)論,討論交流所得.(同時用實物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

  生:(可能出現(xiàn)的情況)(1)在兩個坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個底數(shù)大于1,一個底數(shù)小于1;(4)關(guān)于y軸對稱的兩個指數(shù)函數(shù).

  師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個坐標(biāo)系中畫圖?為什么不也取兩個底數(shù)小于1?

  師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?

  生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(0, 1).

  師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(0, 1).

  師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

  師:也就是說值域為(0, +∞).

  生:指數(shù)函數(shù)是非奇非偶函數(shù).

  師:有不同意見嗎?

  生:當(dāng)0

  (其它預(yù)設(shè):

  (1)當(dāng)a>1時,若x>0,則y>1;若x<0,則y<1.

  當(dāng)00,則y<1;若x<0 y="">1.

  (2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

  (3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對稱.)

  師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機會.)大家認為底數(shù)a>1或0

  [階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):

 、俣x域為R.

 、谥涤驗(0, +∞).

  ③圖象過定點(0, 1).

 、芊瞧娣桥己瘮(shù).

  ⑤當(dāng)a>1時,函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;

  當(dāng)0

 、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對稱.

 、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:

  x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;

  x=0時,兩圖象相交;

  x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.

  [意圖分析]通過探究活動,使學(xué)生獲得對指數(shù)函數(shù)圖象的直觀認識.學(xué)生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報過程中,一方面要通過對探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識與能力都薄弱的學(xué)生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點.

  3.新知運用鞏固深化

  (方案一)(分析函數(shù)性質(zhì)的用途)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?

  生:可以求最值,可以比較兩個函數(shù)值的大小.

  師:那你能舉出運用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)

  生:(舉例并判斷大小.)

  師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

  師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.(出示例1)

  (方案二)

  師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

  師:(口述并板書)你能比較32與33的大小嗎?

  生:直接計算比較.

  師:那比較30.2與30.3的大小呢?能不能不計算呢?

  生:利用函數(shù)y=3x的單調(diào)性.

  師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達)我們再試一試.

  (出示例1)

  【例1】比較下列各組數(shù)中兩個值的大。

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [設(shè)計意圖] 引導(dǎo)學(xué)生運用指數(shù)函數(shù)性質(zhì).對于 32與33的大小比較,學(xué)生更可能計算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調(diào)性,也可能直接運用單調(diào)性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.

  [師生活動]學(xué)生板演,教師組織學(xué)生點評.

  [教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達,正確運用性質(zhì).③學(xué)生可能運用不同方法,應(yīng)給予充分的時間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.

  師:(引導(dǎo)學(xué)生規(guī)范表達)你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?

  師:(對③的引導(dǎo))你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)

  生:它們都過點(0, 1).

  師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

  生:比較1.50.3,0.81.2和1的大小.

  師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計算就可以比較兩個冪的大小.

  【例2】

 、僖阎3x≥30.5,求實數(shù)x的取值范圍;

 、谝阎0.2x<25,求實數(shù)x的取值范圍.

  [設(shè)計意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時考查指數(shù)函數(shù)的定義域.

  4.概括知識總結(jié)方法

  〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識?你還學(xué)會了哪些方法?

  [設(shè)計意圖] 回顧所學(xué)內(nèi)容,深化認知.開放式小結(jié),不同學(xué)生有不同的收獲.

  [師生活動]學(xué)生發(fā)言總結(jié),交流所得.

  [教學(xué)預(yù)設(shè)]

  通過本節(jié)課對指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識和方法:

 、僦笖(shù)函數(shù)的定義與性質(zhì);

  ②研究函數(shù)的一般方法和步驟.

  師:本節(jié)課我們學(xué)習(xí)了什么知識?

  生:指數(shù)函數(shù)的定義和性質(zhì).

  師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

  生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).

  生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.

  師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).

  [意圖分析]課堂總結(jié)不是對所學(xué)知識的簡單回顧,應(yīng)讓學(xué)生在知識、方法和策略上多層次地整理,促進學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識與能力的共同進步.

  5.分層作業(yè),因材施教

  (1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;

  (2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?

  [設(shè)計意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運用”提供學(xué)生運用函數(shù)研究的一般方法自主研究的機會.

 、觯毯蠓此蓟仡

  一、對于指數(shù)函數(shù)概念的認識

  指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.

  二、對于培養(yǎng)學(xué)生思維習(xí)慣的考慮

  在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進行觀察和歸納的良好的思維習(xí)慣.對所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識水平或教學(xué)要求進行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識,也初步體驗了研究問題的基本方法.

  三、關(guān)于設(shè)計定位的反思

  本節(jié)課的教學(xué)設(shè)計,力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、

高一數(shù)學(xué)教學(xué)計劃10

  一、基本情況

  高一計算機1323班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進入高中,學(xué)習(xí)環(huán)境新,好奇心強.但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對數(shù)學(xué)科的興趣,以及在補足初中知識漏洞的前提下,進一步的夯實學(xué)生基礎(chǔ).

  二、指導(dǎo)思想

  全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個中心,更新教育觀念,進一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時扎扎實實抓好基礎(chǔ)知識,注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅實的基礎(chǔ)。

  三、工作任務(wù)和措施

  任務(wù):基礎(chǔ)模塊第一章至第四章

  第一章集合(9月份

  第二章不等式(10月份

  第三章函數(shù)(11月份

  第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份

  措施:

  1.夯實三基

  知識、技能和能力三者關(guān)系是互相依存、互相促進的整體,能力是在知識的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學(xué)中應(yīng)注意:

  A.教學(xué)面向全體學(xué)生。

  B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。

  C.重視知識的產(chǎn)生、發(fā)展過程。

  D.加強知識過關(guān)檢測,做好查漏補缺工作。

  2.優(yōu)化課堂教學(xué)結(jié)構(gòu)

  A.精心設(shè)計課堂教學(xué):

  B.課堂練習(xí)典型化;

  C.教學(xué)語言精練化

  D.板書規(guī)范化。

  3.加強學(xué)習(xí)方法指導(dǎo):

  A.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動學(xué)習(xí)的習(xí)慣。

  B.指導(dǎo)學(xué)生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。

  4.加強學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。

  適當(dāng)安排作業(yè),認真檢查督促,加強優(yōu)生和后進生的輔導(dǎo),對學(xué)生的作業(yè)盡量做到面批。

  四、各章節(jié)授課具體時間安排:

  (基礎(chǔ)模塊第一章集合(約12課時

  (1理解集合、元素及其關(guān)系,掌握集合的表示法。

  (2掌握集合之間的關(guān)系(子集、真子集、相等。

  (3理解集合的運算(交、并、補。

  (4了解充要條件。

  (基礎(chǔ)模塊第二章不等式(約12課時

  (1理解不等式的基本性質(zhì)。

  (2掌握區(qū)間的概念。高一上數(shù)學(xué)教學(xué)計劃高一上數(shù)學(xué)教學(xué)計劃。

  (3掌握一元二次不等式的解法。

  基礎(chǔ)模塊)第三章函數(shù)(約20課時

  (1理解函數(shù)的`概念和函數(shù)的三種表示法。

  (2理解函數(shù)的單調(diào)性與奇偶性。

  (3能運用函數(shù)的知識解決有關(guān)實際問題。

  (基礎(chǔ)模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時

  (1理解有理指數(shù)冪,掌握實數(shù)指數(shù)冪及其運算法則,掌握利用計算器進行冪的計算方法。

  (2了解冪函數(shù)的概念及其簡單性質(zhì)。

  (3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。

  (4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計算器求對數(shù)值的方法。

  (5理解對數(shù)函數(shù)的概念、圖像及性質(zhì)。

  (6能運用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關(guān)實際問題。

高一數(shù)學(xué)教學(xué)計劃11

  本學(xué)期擔(dān)任高一xx兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。

  一、指導(dǎo)思想:

  使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。

  1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

  4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

  5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6.具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、教學(xué)目標(biāo):

  (一)情意目標(biāo)

  (1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

  (2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。

  (3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識

  (4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

  (5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

  (6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

  (二)能力要求培養(yǎng)學(xué)生記憶能力

  (1)通過定義、命題的'總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

  (2)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。

  2、培養(yǎng)學(xué)生的運算能力

  (1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。

  (3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。

高一數(shù)學(xué)教學(xué)計劃12

  一、學(xué)生狀況分析

  學(xué)生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

  二、教材簡析

  使用人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書?數(shù)學(xué)(A版)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;境醯群瘮(shù)。函數(shù)的應(yīng)用)。必修2有四章(空間幾何體。點線平面間的位置關(guān)系。直線與方程。圓與方程)。

  三、教學(xué)任務(wù)

  本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成)。必修2在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

  3、提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6、具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進目標(biāo)達成的重點工作及措施

  重點工作:

  認真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。

  分層推進措施:

  1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

  2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性。注意運用對比的方法,反復(fù)比較相近的概念。注意結(jié)合直觀圖形,說明抽象的知識。注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的'邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系。加強復(fù)習(xí)檢查工作。抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動接受知識轉(zhuǎn)化主動學(xué)習(xí)知識。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計劃13

  一、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題

  我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:

  1、進一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

  2、被動學(xué)習(xí)。許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成。┎涣私猓粫ミM行反思總結(jié),甚至根本不關(guān)心自己的成敗。

  4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。

  5、不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴重制約著學(xué)生數(shù)學(xué)成績的提高。

  二、教學(xué)策略思考與實踐

  針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。

  加強學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

  制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學(xué)習(xí)意志。

  課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

  上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)!皩W(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

  及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”。

  獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”。

  解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。

  系統(tǒng)小結(jié)是學(xué)生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系。以達到對所學(xué)知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。

  課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。

  1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個原始概念,是不加定義的。它從常見的.“我校高一年級學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。

  再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項和Sn。有q≠1和q=1兩種情形;對數(shù)計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對數(shù)函數(shù)題時,要注意“真數(shù)大于0”的隱含條件;解有關(guān)二次函數(shù)題時要注意二次項系數(shù)不為零的隱含條件等。讀書要鼓勵學(xué)生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個元素)。在引導(dǎo)學(xué)生閱讀時,教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。

  2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將“冰冷”的知識加溫后傳授給學(xué)生。講是實踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

  每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個銳角三角函數(shù)值的問題。此時教師應(yīng)進一步引導(dǎo)學(xué)生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓學(xué)生從感性認識上升到理性認識。鼓勵學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。

  例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項公式、等比中項、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項和?梢砸龑(dǎo)學(xué)生對照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個對偶概念。

  3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進行“高、深、難”練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強化知識、應(yīng)用方法,在練習(xí)中分步達到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項求通項公式練習(xí),在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個改造性很強的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點“彎路”,吃點“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。

  例如,高一(下)P26例5求證?梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標(biāo)為2,最終得解。要求學(xué)生掌握通解通法同時,也要講究特殊解法。最后練習(xí)要增強應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。

  4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進行協(xié)調(diào)。以后的時間里,根據(jù)學(xué)生實際學(xué)習(xí)情況,隨時進行調(diào)整。

  5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a差工作。輔導(dǎo)要鼓勵學(xué)生多提出問題,對于不能提高的同學(xué)要從平時作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標(biāo)性。要及時檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細致輔導(dǎo),還要注意鼓勵學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。

高一數(shù)學(xué)教學(xué)計劃14

  一、教學(xué)內(nèi)容

  本學(xué)期將完成數(shù)學(xué)必修1和數(shù)學(xué)必修4 (人教A版)兩本教材的的學(xué)習(xí),教學(xué)輔助材料有《同步金太陽導(dǎo)學(xué)》。

  二、教學(xué)目標(biāo)與要求

  認真深入地學(xué)習(xí)《新課程標(biāo)準(zhǔn)》,研讀教材。明確教學(xué)目的,把握教學(xué)目標(biāo),把準(zhǔn)教學(xué)標(biāo)高。注意到新教材的特點親和力問題性思想性聯(lián)系性,注意對基本概念的理解、基本規(guī)律的掌握、基本方法的應(yīng)用上多下功夫,轉(zhuǎn)變教學(xué)觀念,螺旋上升地安排核心數(shù)學(xué)概念和重要數(shù)學(xué)思想,加強數(shù)學(xué)思想方法的滲透與概括。在課堂教學(xué)中要以學(xué)生為主,注重師生互動,對基本的知識點要落實到位,新教材對教學(xué)中有疑問的地方要在備課組中多加討論和研究,特別是有關(guān)概念課的教學(xué),一定要講清概念的發(fā)生、發(fā)展、內(nèi)涵、外延,不要模棱兩可。

  1. 處理好初高中銜接問題。初中內(nèi)容的不適當(dāng)刪減、降低要求,導(dǎo)致學(xué)生雙基無法達到高中教學(xué)要求;高中不顧學(xué)生的基礎(chǔ),任意拔高教學(xué)要求,繁瑣的、高難度的運算充斥課堂。對初中沒學(xué)而高中又要求掌握的內(nèi)容(具體內(nèi)容見附錄)。

  2. 準(zhǔn)確把握教學(xué)要求,循序漸進地教學(xué)。不搞一步到位刪減的內(nèi)容不要隨意補充;不要擅自調(diào)整內(nèi)容順序;教輔材料不能作為教學(xué)的依據(jù);把更多的注意力放在核心概念、基本數(shù)學(xué)思想方法上;追求通性通法,不追求特技。

  3. 適當(dāng)使用信息技術(shù)。新課程主張多媒體教學(xué)。在教材中很容易發(fā)現(xiàn)新課改對信息技術(shù)在數(shù)學(xué)教學(xué)上的應(yīng)用,并在配備的`光盤中提供了相當(dāng)數(shù)量的課件,有利于學(xué)生更全面的吸收知識,提高課堂注意力和學(xué)習(xí)的興趣。但我還是認為,多媒體知識教學(xué)的輔助手段,選不選用多媒體要看教學(xué)內(nèi)容。尤其是數(shù)學(xué)這門學(xué)科,有些直觀的內(nèi)容用多媒體還是不錯的,但有的內(nèi)容諸如讓學(xué)生思考體會的問題不是很適合多媒體教學(xué)的。根據(jù)學(xué)習(xí)內(nèi)容需要選擇恰當(dāng)?shù)男畔⒓夹g(shù)工具和使用科學(xué)型計算器;提倡適當(dāng)使用各種數(shù)學(xué)軟件。

  4. 充分發(fā)揮集體備課的作用。利用每周一次的集體備課,認真討論本周的教學(xué)得失,研究下周所教內(nèi)容的重難點,安排周練的內(nèi)容。要根據(jù)實際情況,有針對性地組編訓(xùn)練題,做到每周一次綜合訓(xùn)練(同步或滾雪球式的保溫訓(xùn)練),一次微型補差訓(xùn)練,要搞好單元過關(guān)訓(xùn)練。選題要注意基礎(chǔ),強化通法,針對性強,避免對資料上的訓(xùn)練題全套照搬使用。要重視對數(shù)學(xué)尖子生的培養(yǎng),力爭在數(shù)學(xué)競賽中取得好成績。

  5. 在重視智力因素的同時必須關(guān)注非智力因素。應(yīng)認識到非智力因素在學(xué)生全面發(fā)展和數(shù)學(xué)學(xué)習(xí)過程中所起的重要作用,并內(nèi)化為自覺的行為,切實培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和良好的個性品質(zhì)。

高一數(shù)學(xué)教學(xué)計劃15

  進一步深化教育教學(xué)改革,樹立全新的語文教育觀,構(gòu)建全新而科學(xué)的教學(xué)目標(biāo)體系、數(shù)學(xué)網(wǎng)特制定高一上學(xué)期數(shù)學(xué)函數(shù)的基本性質(zhì)教學(xué)計劃模板。

  教材分析

  函數(shù)性質(zhì)是函數(shù)的固有屬性,是認識函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應(yīng)出來,因此,函數(shù)各個性質(zhì)的學(xué)習(xí)要從特殊的、已知的圖象入手,抽象出此類函數(shù)的'共同特征,并用數(shù)學(xué)語言來定義敘述;诖,本節(jié)的概念課教學(xué)要注重引導(dǎo),注重知識的形成過程,習(xí)題課教學(xué)以具體技巧、方法作為輔助練習(xí)。

  學(xué)情分析

  學(xué)生對函數(shù)概念重新認識之后,可以結(jié)合初中學(xué)過的簡單函數(shù)的圖象對函數(shù)性質(zhì)進行抽象定義。另外,為了方便學(xué)生做題及熟悉函數(shù)性質(zhì),還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊,本節(jié)課的教學(xué)要從學(xué)生認知實際出發(fā),堅持從圖象中來到圖象中去的原則。

  教學(xué)建議

  以圖象作為切入點進行概念課教學(xué),引導(dǎo)學(xué)生對概念的形成有一個清晰的認識,尤其是概念中的部分關(guān)鍵詞要做深入講解,用函數(shù)圖象指導(dǎo)學(xué)生做題。

 教學(xué)目標(biāo)

  知識與技能

  (1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征

  (2)會用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性

  (3)單調(diào)性與奇偶性的綜合題

  (4)培養(yǎng)學(xué)生觀察、歸納、推理的抽象思維能力

  過程與方法

  (1)從觀察具體函數(shù)的圖像特征入手,結(jié)合相應(yīng)問題引導(dǎo)學(xué)生一步步轉(zhuǎn)化到用數(shù)學(xué)語言形式化的建立相關(guān)概念

  (2)滲透數(shù)形結(jié)合的數(shù)學(xué)思想進行習(xí)題課教學(xué)

  情感、態(tài)度與價值觀

  (1)使學(xué)生學(xué)會認識事物的一般規(guī)律:從特殊到一般,抽象歸納

  (2)培養(yǎng)學(xué)生嚴密的邏輯思維能力,進一步規(guī)范學(xué)生用數(shù)學(xué)語言、數(shù)學(xué)符號進行表達

  課時安排

  (1)概念課:單調(diào)性2課時,最值1課時,奇偶性1課時

  (2)習(xí)題課:5課時

【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:

數(shù)學(xué)高一教學(xué)計劃03-10

高一數(shù)學(xué)教學(xué)計劃11-02

高一數(shù)學(xué)教學(xué)計劃12-24

高一數(shù)學(xué)的教學(xué)計劃04-04

高一數(shù)學(xué)教學(xué)計劃05-29

高一數(shù)學(xué)教學(xué)教學(xué)計劃02-06

關(guān)于高一數(shù)學(xué)教學(xué)計劃01-29

高一數(shù)學(xué)教學(xué)計劃范本01-22

高一數(shù)學(xué)教學(xué)計劃優(yōu)秀10-26

高一數(shù)學(xué)的教學(xué)計劃通用10-12