考研高等數(shù)學六大必考題型

時間:2023-04-28 09:03:06 考研熱訊 我要投稿
  • 相關推薦

2012年考研高等數(shù)學六大必考題型

     第一:求極限。

2012年考研高等數(shù)學六大必考題型

  無論數(shù)學一、數(shù)學二還是數(shù)學三,求極限是高等數(shù)學的基本要求,所以也是每年必考的內容。區(qū)別在于有時以4分小題形式出現(xiàn),題目簡單;有時以大題出現(xiàn),需要使用的方法綜合性強。比如大題可能需要用到等價無窮小代換、泰勒展開式、洛比達法則、分離因子、重要極限等中的幾種方法,有時考生需要選擇其中簡單易行的組合完成題目。另外,分段函數(shù)個別點處的導數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導性的研究等也需要使用極限手段達到目的,須引起注意!

  第二:利用中值定理證明等式或不等式,利用函數(shù)單調性證明不等式。

  證明題雖不能說每年一定考,但也基本上十年有九年都會涉及。等式的證明包括使用4個微分中值定理,1個積分中值定理;不等式的證明有時既可使用中值定理,也可使用函數(shù)單調性。這里泰勒中值定理的使用是一個難點,但考查的概率不大。

  第三:一元函數(shù)求導數(shù),多元函數(shù)求偏導數(shù)。

  求導數(shù)問題主要考查基本公式及運算能力,當然也包括對函數(shù)關系的處理能力。一元函數(shù)求導可能會以參數(shù)方程求導、變限積分求導或應用問題中涉及求導,甚或高階導數(shù);多元函數(shù)(主要為二元函數(shù))的偏導數(shù)基本上每年都會考查,給出的函數(shù)可能是較為復雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。

  另外,二元函數(shù)的極值與條件極值與實際問題聯(lián)系極其緊密,是一個考查重點。極值的充分條件、必要條件均涉及二元函數(shù)的偏導數(shù)。

  第四:級數(shù)問題。

  常數(shù)項級數(shù)(特別是正項級數(shù)、交錯級數(shù))斂散性的判別,條件收斂與絕對收斂的本質含義均是考查的重點,但常常以小題形式出現(xiàn)。函數(shù)項級數(shù)(冪級數(shù),對數(shù)一來說還有傅里葉級數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點的冪級數(shù)展開在考試中常占有較高的分值。

  第五:積分的計算。

  積分的計算包括不定積分、定積分、反常積分的計算,以及二重積分的計算,對數(shù)學考生來說常主要是三重積分、曲線積分、曲面積分的計算。這是以考查運算能力與處理問題的技巧能力為主,以對公式的熟悉及空間想像能力的考查為輔的。需要注意在復習中對一些問題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的反用,對稱性的使用等。

  第六:微分方程問題。

  解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運算準確性,在考場上正確運算都沒有問題。但這里需要注意:研究生考試對微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要考生對方程與其通解、特解之間的關系熟練掌握。

【考研高等數(shù)學六大必考題型】相關文章:

考研英語題型01-25

考研英語題型有哪些08-11

2023考研數(shù)學復習規(guī)則:高等數(shù)學03-20

英語備考六大題型全攻略05-04

2023考研英語見多題型找對方法03-20

[名師答疑]掌握好六大題型的重點知識05-04

分析寫作題型 專項突破2002年考研英語寫作05-04

考研英語閱讀四大題型命題思路解析07-26

新東方名師:職稱英語試卷六大題型詳細解讀05-04

小學語文必考詩詞大全11-23