高一數學公式

時間:2024-03-12 14:21:42 好文 我要投稿
  • 相關推薦

高一數學公式大全

高一數學公式大全1

  一般數列的通項求法

高一數學公式大全

  一般有:

  an=Sn-Sn-1 (n≥2)

  累和法(an-an-1=... an-1 - an-2=... a2-a1=...將以上各項相加可得an)。

  逐商全乘法(對于后一項與前一項商中含有未知數的數列)。

  化歸法(將數列變形,使原數列的倒數或與某同一常數的和成等差或等比數列)。

  特別的:

  在等差數列中,總有Sn S2n-Sn S3n-S2n

  2(S2n-Sn)=(S3n-S2n)+Sn

  即三者是等差數列,同樣在等比數列中。三者成等比數列

  不動點法(常用于分式的通項遞推關系)

  特殊數列的通項的`寫法

  1,2,3,4,5,6,7,8....... ---------an=n

  1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n

  2,4,6,8,10,12,14.......-------an=2n

  1,3,5,7,9,11,13,15.....-------an=2n-1

  -1,1,-1,1,-1,1,-1,1......--------an=(-1)^n

  1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)

  1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2

  1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2

  9,99,999,9999,99999,......... ------an=(10^n)-1

  1,11,111,1111,11111.......--------an=[(10^n)-1]/9

  1,4,9,16,25,36,49,.......------an=n^2

  1,2,4,8,16,32......--------an=2^(n-1)

  數列前N項和公式的求法

  (一)1.等差數列:

  通項公式an=a1+(n-1)d 首項a1,公差d, an第n項數

  an=ak+(n-k)d ak為第k項數

  若a,A,b構成等差數列 則A=(a+b)/2

  2.等差數列前n項和:

  設等差數列的前n項和為Sn

  即Sn=a1+a2+...+an;

  那么Sn=na1+n(n-1)d/2

  =dn^2(即n的2次方) /2+(a1-d/2)n

  還有以下的求和方法: 1,不完全歸納法 2 累加法3 倒序相加法

  (二)1.等比數列:

  通項公式an=a1*q^(n-1)(即q的n-1次方) a1為首項,an為第n項

  an=a1*q^(n-1),am=a1*q^(m-1)

  則an/am=q^(n-m)

  (1)an=am*q^(n-m)

  (2)a,G,b 若構成等比中項,則G^2=ab (a,b,G不等于0)

  (3)若m+n=p+q 則am×an=ap×aq

  2.等比數列前n項和

  設a1,a2,a3...an構成等比數列

  前n項和Sn=a1+a2+a3...an

  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(這個公式雖然是最基本公式,但一部分題目中求前n項和是很難用下面那個公式推導的,這時可能要直接從基本公式推導過去,所以希望這個公式也要理解)

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

  注: q不等于1;

  Sn=na1 注:q=1

  求和一般有以下5個方法: 1,完全歸納法(即數學歸納法)2 累乘法3 錯位相減法 4 倒序求和法5 裂項相消法

高一數學公式大全2

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

  弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

  乘法與因式分 a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

  判別式

  b2-4ac=0 注:方程有兩個相等的實根

  b2-4ac>0 注:方程有兩個不等的實根

  b2-4ac<0 注:方程沒有實根,有共軛復數根

  降冪公式

  (sin^2)x=1-cos2x/2

  (cos^2)x=i=cos2x/2

  萬能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與 -α的三角函數值之間的'關系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α與α的三角函數值之間的關系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  (以上k∈Z)

  注意:在做題時,將a看成銳角來做會比較好做。

高一數學公式大全3

  集合與函數

  內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

  復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

  指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

  函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;

  正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。

  兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

  求解非常有規(guī)律,反解換元定義域;反函數的定義域,原來函數的值域。

  冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

  奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

  三角函數

  三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

  同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

  頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,

  變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

  將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

  高一數學學習方法

  1、很多高一學生都在抱怨,為什么努力了那么久,數學成績還沒有提升呢?在他們的眼中,努力就是按時完成作用,好好做題,但是成績卻沒有提升。但是,這是因為他們沒有分清“視力和視野”有什么區(qū)別。很多高一學生只跟著老師的思路,老師安排什么任務,她就做什么。沒有自己的學習計劃,這樣是學不好數學的。

  2、記好課堂筆記。不要以為記筆記是文科科目的`專利,數學也是需要做筆記的。高一學生要清楚做筆記的意義。高中課堂每節(jié)課只有45分鐘,在這45分鐘里并不能每個知識點都能記住和掌握的,這個時候就需要高一學生把自己沒有理解的知識記下來,等到下課的時候再去研究。而且,做筆記也是一個總結整理的過程,也是再次學習的過程。

  3、學好課本知識。對于高一學生來說,大部分數學知識都是來源于課本的,只有少部分是來自課外拓展。高一學生想要學好數學,就要利用好課本,把課本上的知識點都理解掌握了。平時做題的時候,也應該以課本為重,高一學生可以把數學課本上的習題都做好了,再做其他的題。

  4、做題后反思。高一學生一定要明確一點,就是現在做的題不等于考試的題目。高一學生做題的目的是為了學習正在做的題目的解題思路和方法。因此,高一學生要學會把自己做的每道題都加以反思,總結自己的收獲。

高一數學公式大全4

  等比數列公式

  如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。

 。1)等比數列的通項公式是:An=A1×q^(n-1)

  若通項公式變形為an=a1/q*q^n(n∈N*),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q*q^x上的一群孤立的'點。

  (2) 任意兩項am,an的關系為an=am·q^(n-m)

 。3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

 。4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

  性質:

 、偃鬽、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;

 、谠诘缺葦盗兄,依次每k項之和仍成等比數列.

  “G是a、b的等比中項”“G^2=ab(G≠0)”.

  (5) 等比數列前n項之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1 (q=1)

  在等比數列中,首項A1與公比q都不為零.

  注意:上述公式中A^n表示A的n次方。

  等比數列在生活中也是常常運用的。

  如:銀行有一種支付利息的方式---復利。

  即把前一期的利息和本金加在一起算作本金,

  再計算下一期的利息,也就是人們通常說的利滾利。

  按照復利計算本利和的公式:本利和=本金*(1+利率)^存期

  等差數列公式

  等差數列的通項公式為:an=a1+(n-1)d

  或an=am+(n-m)d

  前n項和公式為:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2

  若m+n=p+q則:存在am+an=ap+aq

  若m+n=2p則:am+an=2ap

  以上n均為正整數

高一數學公式大全5

  圓的公式

  1、圓體積=4/3(pi)(r^3)

  2、面積=(pi)(r^2)

  3、周長=2(pi)r

  4、圓的標準方程(x—a)2+(y—b)2=r2【(a,b)是圓心坐標】

  5、圓的`一般方程x2+y2+dx+ey+f=0【d2+e2—4f>0】

  橢圓公式

  1、橢圓周長公式:l=2πb+4(a—b)

  2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

  3、橢圓面積公式:s=πab

  4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

  以上橢圓周長、面積公式中雖然沒有出現橢圓周率t,但這兩個公式都是通過橢圓周率t推導演變而來。

  兩角和公式

  1、sin(a+b)=sinacosb+cosasinbsin(a—b)=sinacosb—sinbcosa

  2、cos(a+b)=cosacosb—sinasinbcos(a—b)=cosacosb+sinasinb

  3、tan(a+b)=(tana+tanb)/(1—tanatanb)tan(a—b)=(tana—tanb)/(1+tanatanb)

  4、ctg(a+b)=(ctgactgb—1)/(ctgb+ctga)ctg(a—b)=(ctgactgb+1)/(ctgb—ctga)

  倍角公式

  1、tan2a=2tana/(1—tan2a)ctg2a=(ctg2a—1)/2ctga

  2、cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  1、sin(a/2)=√((1—cosa)/2)sin(a/2)=—√((1—cosa)/2)

  2、cos(a/2)=√((1+cosa)/2)cos(a/2)=—√((1+cosa)/2)

  3、tan(a/2)=√((1—cosa)/((1+cosa))tan(a/2)=—√((1—cosa)/((1+cosa))

  4、ctg(a/2)=√((1+cosa)/((1—cosa))ctg(a/2)=—√((1+cosa)/((1—cosa))

  和差化積

  1、2sinacosb=sin(a+b)+sin(a—b)2cosasinb=sin(a+b)—sin(a—b)

  2、2cosacosb=cos(a+b)—sin(a—b)—2sinasinb=cos(a+b)—cos(a—b)

  3、sina+sinb=2sin((a+b)/2)cos((a—b)/2cosa+cosb=2cos((a+b)/2)sin((a—b)/2)

  4、tana+tanb=sin(a+b)/cosacosbtana—tanb=sin(a—b)/cosacosb

  5、ctga+ctgbsin(a+b)/sinasinb—ctga+ctgbsin(a+b)/sinasinb

  高一數學公式記憶口訣

  《集合與函數》

  內容子交并補集,還有冪指對函數。

  性質奇偶與增減,觀察圖象最明顯。

  復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

  指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。函數定義域好求。

  分母不能等于0,偶次方根須非負,零和負數無對數;正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。

  兩個互為反函數,單調性質都相同;圖象互為軸對稱,y=x是對稱軸;求解非常有規(guī)律,反解換元定義域;反函數的定義域,原來函數的值域。

  冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

高一數學公式大全6

  拋物線

  1、拋物線:y=ax_+bx+c就是y等于ax的平方加上bx再加上c。

  a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經過原點;b=0時拋物線對稱軸為y軸。

  2、頂點式y(tǒng)=a(x+h)_+k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用于求最大值與最小值。

  3、拋物線標準方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。

  4、準線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標準方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

  圓的公式

  1、圓體積=4/3(pi)(r^3)

  2、面積=(pi)(r^2)

  3、周長=2(pi)r

  4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】

  5、圓的.一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

  橢圓公式

  1、橢圓周長公式:l=2πb+4(a-b)

  2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

  3、橢圓面積公式:s=πab

  4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

高一數學公式大全7

  誘導公式

  一:設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

  二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  三:任意角α與-α的三角函數值之間的關系:

  sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  四:利用公式二和公式三可以得到π-α與α的'三角函數值之間的關系:

  sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

  sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

高一數學公式大全8

  拋物線公式

  y = ax^2+bx+c就是y等于ax的平方加上b

  a > 0時開口向上

  a < 0時開口向下

  c = 0時拋物線經過原點

  b = 0時拋物線對稱軸為y軸

  拋物線標準方程:y^2=2px

  它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)準線方程為x=—p/2

  由于拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=—2px x^2=2py x^2=—2py

  面積公式

  圓的體積公式4/3(pi)(r^3)

  圓的面積公式(pi)(r^2)

  圓的周長公式2(pi)r

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2—2accosB注:角B是邊a和邊c的夾角

  圓的標準方程(x—a)2+(y—b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  拋物線標準方程y2=2px y2=—2px x2=2py x2=—2py

  直棱柱側面積S=c_h斜棱柱側面積S=c'_h

  正棱錐側面積S=1/2c_h'正棱臺側面積S=1/2(c+c')h'

  圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_r2

  圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l

  弧長公式l=a_r a是圓心角的.弧度數r>0扇形面積公式s=1/2_l_r

  錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h

  斜棱柱體積V=S'L注:其中S'是直截面面積L是側棱長

  柱體體積公式V=s_h圓柱體V=pi_r2h

  橢圓周長計算公式

  橢圓周長公式:L=2πb+4(a—b)

  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

  橢圓面積計算公式

  橢圓面積公式:S=πab

  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

高一數學公式大全9

  導數公式

  y=f(x)=c (c為常數)則f'(x)=0

  f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)

  f(x)=sinx f'(x)=cosx

  f(x)=cosx f'(x)=-sinx

  f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

  f(x)=e^x f'(x)=e^x

  f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)

  f(x)=lnx f'(x)=1/x(x>0)

  f(x)=tanx f'(x)=1/cos^2x

  f(x)=cotx f'(x)=-1/sin^2x

  導數運算法則

  加法法則:(f(x)-g(x))'=f'(x)-g'(x)

  減法法則:(f(x)+g(x))'=f'(x)+g'(x)

  乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

  除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

【高一數學公式】相關文章:

高三數學公式03-09

(精)高三數學公式7篇03-09

八年級數學上冊數學公式12-18

高一反思03-01

高一勞動話題10-13

高一化學知識03-03

給高一新生的信10-19

高一新生簡單03-11

高一數學解題方法03-03