高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)
總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書(shū)面材料,它能夠給人努力工作的動(dòng)力,讓我們一起來(lái)學(xué)習(xí)寫(xiě)總結(jié)吧?偨Y(jié)怎么寫(xiě)才不會(huì)流于形式呢?以下是小編幫大家整理的高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié),僅供參考,大家一起來(lái)看看吧。
高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)1
什么是不等式?
一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式?偟膩(lái)說(shuō),用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≤,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
數(shù)學(xué)知識(shí)點(diǎn)1、不等式性質(zhì)比較大小方法:
。1)作差比較法(2)作商比較法
不等式的基本性質(zhì)
①對(duì)稱(chēng)性:a > b,b > a
②傳遞性:a > b,b > ca > c
、劭杉有裕篴 > b a + c > b + c
④可積性:a > b,c > 0,ac > bc
、菁臃ǚ▌t:a > b,c > d,a + c > b + d
、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd
、叱朔椒▌t:a > b > 0,an > bn(n∈N)
、嚅_(kāi)方法則:a > b > 0
數(shù)學(xué)知識(shí)點(diǎn)2、算術(shù)平均數(shù)與幾何平均數(shù)定理:
。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))
。2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:
如果為實(shí)數(shù),則重要結(jié)論
。1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;
。2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。
數(shù)學(xué)知識(shí)點(diǎn)3、證明不等式的常用方法:
比較法:比較法是最基本、最重要的方法。
當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。
綜合法:從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。
分析法:不等式兩邊的聯(lián)系不夠清楚,通過(guò)尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。
高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)2
1、三類(lèi)角的求法:
、僬页龌蜃鞒鲇嘘P(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾(jì)算大。ń庵苯侨切危蛴糜嘞叶ɡ恚。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
正棱錐的計(jì)算集中在四個(gè)直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時(shí),注意利用圓的“垂徑定理”。
4、對(duì)線性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法
培養(yǎng)興趣是關(guān)鍵。學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?
(1)欣賞數(shù)學(xué)的美感
比如幾何圖形中的對(duì)稱(chēng)、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……
舉個(gè)例子,
通過(guò)對(duì)旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對(duì)勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對(duì)值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。
(2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。
例如和日常生活息息相關(guān)的'等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識(shí)就可以理解。
學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊。
。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。
利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識(shí)講得更具體形象,學(xué)生也更容易接受,理解更深。
(4)適當(dāng)看一些科普類(lèi)的書(shū)籍和文章。
比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對(duì)此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。
高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)3
1、命題的四種形式及其相互關(guān)系是什么?
。ɑ槟娣耜P(guān)系的命題是等價(jià)命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?
(一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)
3、函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?
(定義域、對(duì)應(yīng)法則、值域)
4、反函數(shù)存在的條件是什么?
。ㄒ灰粚(duì)應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
。á俜唇鈞;②互換x、y;③注明定義域)
5、反函數(shù)的性質(zhì)有哪些?
、倩榉春瘮(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng);
②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;
6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))
【高中數(shù)學(xué)會(huì)考重點(diǎn)知識(shí)點(diǎn)詳細(xì)總結(jié)】相關(guān)文章:
1.高中數(shù)學(xué)會(huì)考知識(shí)要點(diǎn)總結(jié)
2.高二生物會(huì)考知識(shí)點(diǎn)總結(jié)
3.高二會(huì)考地理知識(shí)點(diǎn)總結(jié)五篇
4.高一歷史必修二會(huì)考重要知識(shí)點(diǎn)總結(jié)
5.初一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)
6.7年級(jí)下冊(cè)地理重點(diǎn)知識(shí)點(diǎn)總結(jié)