分數(shù)的基本性質(zhì)教案
在教學(xué)工作者實際的教學(xué)活動中,總不可避免地需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。我們該怎么去寫教案呢?以下是小編為大家收集的分數(shù)的基本性質(zhì)教案,希望能夠幫助到大家。
分數(shù)的基本性質(zhì)教案1
這節(jié)課,戴老師教師教態(tài)自然、語言清晰、數(shù)學(xué)語言表述準確。著重培養(yǎng)了學(xué)生通過動手操作的活動來讓學(xué)生主動探究分數(shù)的基本性質(zhì),掌握分數(shù)的基本性質(zhì)在生活中的實際應(yīng)用,同時培養(yǎng)了學(xué)生積極參與,團結(jié)合作,主動探索,引導(dǎo)觀察鈫捬罷夜媛桑發(fā)現(xiàn)規(guī)律,我覺得這是一堂充滿生命活力的課堂,能促進學(xué)生全面發(fā)展的課堂,體現(xiàn)新課標理念的課堂,從中我得到了一些鮮活的經(jīng)驗和有益的啟示。具體概括以下幾點?
一、教學(xué)思路清晰,目標明確,重難點突出。
教師根據(jù)教學(xué)內(nèi)容,因材施教地制定了教學(xué)思路。這節(jié)課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學(xué)思路清晰。這節(jié)課戴老師突出培養(yǎng)學(xué)生動手操作,主動探究的訓(xùn)練,通過用三張同樣大的長形紙折一張的`、涂色等活動來探索分數(shù)分子、分母的變化規(guī)律,從而讓學(xué)生發(fā)現(xiàn)規(guī)律,突出重難點的內(nèi)容,整個教學(xué)做到詳略得當(dāng),重難點把握準確。這樣設(shè)計符合學(xué)生年齡特點和認知規(guī)律,體現(xiàn)了以學(xué)生為主體的學(xué)習(xí)過程,培養(yǎng)了學(xué)生的學(xué)習(xí)能力?
二、創(chuàng)設(shè)情境,重視操作活動,發(fā)揮主體作用。
老師能創(chuàng)造機會,讓學(xué)生各種感官參與學(xué)習(xí),把學(xué)生推到主體地位。讓學(xué)生獲得豐富感性認識,使抽象知識具體化、形象化。引導(dǎo)學(xué)生比較觀察三幅圖的異同之處,分數(shù)的分子分母的變化過程,從而證實變化的規(guī)律,整個操作過程層次分明,通過折涂,學(xué)生動手、動腦、動口,人人參與學(xué)習(xí)過程,不是操作而操作,而是把操作,理解概念,讓學(xué)生觀察三個圖形來說明概念,降低了難度。通過操作,讓學(xué)生既學(xué)得高興又充分理解知識。形象直觀地推導(dǎo)了分數(shù)的基本性質(zhì)的概念,這樣概念形成過程十分清晰,充分培養(yǎng)了學(xué)生自主探索的能力,把被動地接受知識變?yōu)橹鲃拥孬@取知識,達到教學(xué)目的。
三、練習(xí)設(shè)計具有層次性,開放性。
由淺入深由易到難的設(shè)計,既使學(xué)生牢固的掌握了所學(xué)的知識,鞏固了本節(jié)課的基礎(chǔ)知識,又訓(xùn)練了學(xué)生的思維。激發(fā)了學(xué)生的學(xué)習(xí)興趣。
分數(shù)的基本性質(zhì)教案2
學(xué)習(xí)目標:
1、通過動手操作,自主學(xué)習(xí),小組交流,會說出分數(shù)的基本性質(zhì)。
2、通過練習(xí),能利用分數(shù)的基本性質(zhì)解決問題。
學(xué)習(xí)過程:
知識鏈接:
1、師:用你手中的任意一個學(xué)具,表示出自己喜歡的分數(shù)。學(xué)生通過折、畫表示出自己喜歡的分數(shù)。
2、教師首先引導(dǎo)學(xué)生交流:把你喜歡的分數(shù)介紹給大家。
3、師:看到這個分數(shù),大膽聯(lián)想,你想到了什么?
。ǔǎ1÷4=
4、師:除了1÷4=,還有沒有哪兩個數(shù)相除也是的呢?
這些
5、我這里還有一個關(guān)于的小故事。大家想不想聽?
情境導(dǎo)入:
10月23號是我女兒奇奇10歲的生日。生日那天,我給她買了一個生日蛋糕。蛋糕的分給了奇奇,蛋糕的給我,蛋糕的分給了爸爸?墒瞧嫫娣且f這樣分蛋糕不公平。她只得了1份,我們得到的蛋糕多。
師:你們覺得我分的公平嗎?
師:通過我們今天的學(xué)習(xí),你就知道我到底公平不公平了。今天我們一起來學(xué)習(xí)分數(shù)的基本性質(zhì)。一起來看學(xué)習(xí)目標。
師:下面我們先進行第一個目標的學(xué)習(xí)。
一、自主學(xué)習(xí):
自學(xué)課本75頁,把空白部分補充完整。
思考:
1、三個分數(shù)的分子和分母是按照什么規(guī)律變化的?
2、試舉出幾個這樣的例子。
3、你發(fā)現(xiàn)了什么?
自學(xué)完成后組內(nèi)交流自己的.想法。
二、班級展示:
展示一:通過自學(xué),我們知道,這三個分數(shù)的大小是相等的。那么它們的分子和分母是按照什么規(guī)律變化的呢?
生:分子和分母依次×2或×4得來的。
師:,是按照什么規(guī)律變化的呢?
生:分子和分母依次÷2或÷4得來的。
師:大家能不能再舉幾個這樣的例子呢?(板書)
師:能不能用一句話總結(jié)出這個規(guī)律呢?
展示二:通過這個例子,可以得出什么規(guī)律?
通過展示,得出分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。(齊讀,同桌兩人相互說)
這個環(huán)節(jié)里,教師要引導(dǎo)學(xué)生質(zhì)疑。讓學(xué)生自己發(fā)現(xiàn)0除外這個特性,教師起引導(dǎo)的作用
師:同學(xué)們,剛才我們通過自主學(xué)習(xí),組內(nèi)交流能夠說出分數(shù)的基本性質(zhì)。完成了目標1的學(xué)習(xí)。下面我們進行目標而的學(xué)習(xí)。能利用分數(shù)的基本性質(zhì)解決問題。
三、自學(xué)提示二:自學(xué)課本76頁,并試做例2。
師:請第二組和第四組的四號同學(xué)上黑板板演,其他同學(xué)在下面完成。
師:同學(xué)們,下面我們運用分數(shù)的基本性質(zhì)完成練習(xí)吧!
四、鞏固練習(xí):
1、在()里填上合適的數(shù)。
= = = =
師:這道題運用的是我們今天學(xué)習(xí)分數(shù)的基本性質(zhì)。我覺得有一種似曾相識的感覺。它和我們以前學(xué)過的那個知識點比較相似呢?
2、下面的算式對嗎,為什么?
= =()= =()
= =()= =()
3、把和化成分母是20而大小不變的分數(shù)
4、游戲。師:剛才的練習(xí)大家完成的不錯。老師很高興。接下來我們放松一下,做個游戲。好不好?游戲規(guī)則:老師說一個分數(shù),運用分數(shù)的基本性質(zhì)馬上想一個和這個分數(shù)相等的分數(shù),并站起來回答。比一比,男生的反應(yīng)快還是女生的反應(yīng)快。好嗎?
師:同學(xué)們,通過我們這節(jié)課的學(xué)習(xí),你們說我分的公平嗎?(解決開始設(shè)置的情景問題)
五、小結(jié):同學(xué)們,這節(jié)課,我發(fā)現(xiàn)大家會質(zhì)疑,會補充,會思考,能夠積極的回答問題。老師很高興。希望我們班以后涌現(xiàn)出更多的智多星和火眼金睛。好嗎?下面,來分享我們的收獲,分享我們的快樂吧!
小結(jié):同學(xué)們這節(jié)課到底掌握的怎么樣呢?一起來看課堂檢測。
六、課堂檢測:
1、把下面的分數(shù)化成分母是10而大小不變的分數(shù)。
2、在下面的括號里填上適當(dāng)?shù)臄?shù)。
9÷5= = =6÷()=()÷6
分數(shù)的基本性質(zhì)教案3
教學(xué)目標
進一步理解掌握分數(shù)基本性質(zhì)在通分中的運用,能熟練而靈活地運用通分的方法進行分數(shù)的大小比較。
教學(xué)重難點
旋擇適當(dāng)?shù)姆椒ㄟM行分數(shù)的'大小比較。
教學(xué)準備 分數(shù)卡片
教學(xué)過程
一、基本練習(xí)
學(xué)生自由練習(xí)
互相說一個分數(shù),再通分。
學(xué)生匯報 糾錯
二、集中練習(xí)
教師出示:比較下面各組分數(shù)的大小
1、 和 和
2、 和 和
請同學(xué)評講
課本練習(xí)68頁第九題 把下面分數(shù)填入合適的圈內(nèi)。
比 大的分數(shù)有:
比 小的分數(shù)有:
師生討論:怎樣快速的分類?
自由說一個比 的分數(shù)。并說出理由。
三、解決實際問題的練習(xí)
小明:我10步走了6米,
小紅:我7步走了4米。
問:誰的平均步長長一些?
小組討論,明確解題步驟。
小明:6÷10= =
小紅:4÷7=
因為 = = >
所以 >
答:小明的平均步長長一些。
四、拓展練習(xí):
下面3名小棋手某一天訓(xùn)練的成績統(tǒng)計
總盤數(shù)贏的盤數(shù)贏的盤數(shù)占總數(shù)的幾分之幾
張129
李107
趙138
誰的成績最好?
小組合作集體解決題型。
三個分數(shù)的大小比較,怎樣比較較好?
五、課堂作業(yè)
68頁第11題
分數(shù)的基本性質(zhì)教案4
教學(xué)目標
1、學(xué)生通過實際操作和觀察,預(yù)測和猜想分數(shù)的基本性質(zhì),然后進行實驗分析,通過數(shù)據(jù)和圖表來驗證自己的猜想。接著,學(xué)生根據(jù)實驗結(jié)果進行合情推理,總結(jié)分數(shù)的特點和規(guī)律。最后,學(xué)生通過探究創(chuàng)造的過程,深入理解分數(shù)與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系,從而掌握分數(shù)的基本性質(zhì)。
2、根據(jù)分數(shù)的基本性質(zhì),學(xué)會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學(xué)習(xí)約分和通分打下基礎(chǔ)。
3、培養(yǎng)學(xué)生觀察、分析和抽象概括的能力是教育的重要任務(wù)之一,通過培養(yǎng)這些能力,學(xué)生可以更好地理解事物之間的聯(lián)系和發(fā)展變化。在數(shù)學(xué)學(xué)習(xí)中,學(xué)生不僅要學(xué)會運用各種方法進行驗證,還要學(xué)會敢于質(zhì)疑、學(xué)會分析,這樣才能更深入地理解數(shù)學(xué)知識。在教育教學(xué)中,應(yīng)該注重培養(yǎng)學(xué)生的思維能力和創(chuàng)新意識,讓他們在學(xué)習(xí)過程中不斷探索、實踐,從而提高他們的綜合素質(zhì)。
教學(xué)重點 使學(xué)生理解分數(shù)的基本性質(zhì)。
教學(xué)難點 讓學(xué)生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。
教學(xué)過程
一、故事情景引入
同學(xué)們,去年中秋節(jié),我家鄰居李奶奶家里發(fā)生了一件有趣的事情。當(dāng)晚,李奶奶熱情地邀請我們?nèi)ニ页栽嘛灐N覀円坏剿,就看到桌上擺滿了各種口味的月餅:蓮蓉、豆沙、五仁,還有她自己做的花生醬月餅。大家圍坐在桌前,品嘗著月餅,暢談著中秋節(jié)的傳統(tǒng)和故事。突然,李奶奶掏出一盒特別的月餅,說是她從外地帶回來的,據(jù)說是一種新口味。我們打開一看,原來是冰淇淋月餅!大家都很驚訝,立刻嘗了一塊。冰涼的冰淇淋搭配香甜的月餅皮,味道清新爽口,大家都覺得十分美味。這個不同尋常的月餅,讓我們的中秋節(jié)增添了一絲新奇和歡樂。
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學(xué)們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多!
生乙:“我覺得小明分得多!
生丙:“我覺得公平,他們?nèi)齻分得一樣多!
師:看起來我們班的同學(xué)也開始討論起來了,關(guān)于李奶奶分發(fā)月餅是否公平,等我們上完這節(jié)課,他們就會有答案了。
二、新授
師:老師拿出一個學(xué)具袋,問同學(xué)們里面有什么東西。同學(xué)們紛紛拿出學(xué)具袋,看到里面有些什么呢?(圓片)有幾個呢?(三個)
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大!
1.師:“下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導(dǎo))
2、師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學(xué)說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的.一份,就是它的三分之一!
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二!
師:“那九分之三又是怎么得到的呢?大家一起說!
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三!
(學(xué)生說的同時,教師操作,分完后把圓片貼在黑板上。)
3、師:“同學(xué)們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結(jié):原來三個圓的陰影部分是同樣大的。
師:“現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學(xué)生回答)
生:“奶奶分月餅是公平的,因為他們?nèi)齻分得的月餅一樣多。”
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應(yīng)該是一樣大的!
生乙:“這三個分數(shù)是相等的!
師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)
4、研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變!
師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍!
師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導(dǎo)學(xué)生反過來看,讓學(xué)生自己說出其中的規(guī)律。(邊講邊板書)
教師小結(jié):大家剛才都認真觀察了這組分數(shù),發(fā)現(xiàn)它們的分子和分母不同,但大小卻相同。那么,當(dāng)分子和分母發(fā)生怎樣的變化時,分數(shù)的大小保持不變呢?請和你的同桌討論一下,總結(jié)一下。
學(xué)生 發(fā)言
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學(xué)習(xí)的新知識。分數(shù)的基本性質(zhì)。
5、深入理解分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說!保▽W(xué)生討論后發(fā)言)
師:分數(shù)的基本性質(zhì)是數(shù)學(xué)中非常重要的概念之一。在學(xué)習(xí)分數(shù)時,我們需要掌握一些基本性質(zhì),比如分數(shù)的大小比較、分數(shù)的加減乘除運算規(guī)則等。通過掌握這些基本性質(zhì),我們能夠更好地理解和運用分數(shù),解決各種數(shù)學(xué)問題。學(xué)生們剛才都簡要介紹了分數(shù)的基本性質(zhì),而在教科書上,通常會更系統(tǒng)地總結(jié)和解釋這些性質(zhì)。教科書是經(jīng)過專業(yè)編寫和審核的,其中的內(nèi)容經(jīng)過精心設(shè)計和組織,能夠幫助學(xué)生更好地理解知識點,掌握基本規(guī)則。因此,教科書上對于分數(shù)的基本性質(zhì)的總結(jié)是經(jīng)過權(quán)威的認可和驗證的,更具備權(quán)威性和準確性。所以,學(xué)生們在學(xué)習(xí)分數(shù)時,可以參考教科書上的內(nèi)容,更好地理解和掌握分數(shù)的基本性質(zhì)。
齊讀分數(shù)的基本性質(zhì),并用波浪線表出關(guān)鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學(xué)生結(jié)合以前學(xué)過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當(dāng)于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外!保ㄟ呏v邊板書。)
三、應(yīng)用
學(xué)習(xí)分數(shù)的基本性質(zhì)對我們有什么幫助呢?通過掌握分數(shù)的基本性質(zhì),我們可以利用一些技巧,將一個分數(shù)變換成多個分子和分母不同但值相等的新分數(shù),就像變魔術(shù)一樣。接下來,讓我們一起來學(xué)習(xí)如何進行這個神奇的變換吧。
2.學(xué)生練習(xí)課本例題2,兩名學(xué)生在黑板上做。
3.學(xué)生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
分數(shù)的基本性質(zhì)教案5
教學(xué)目標
1、通過教學(xué)使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
2、培養(yǎng)學(xué)生的觀察能力、動手操作能力和分析概括能力等。
教學(xué)重點:
從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。
教學(xué)難點:形成對分數(shù)基本性質(zhì)的統(tǒng)一認知
教學(xué)準備:圓形紙片、彩筆、各種卡片
一、導(dǎo)入新課
出示例1種中的四幅圖
提問:看圖寫出哪些分數(shù)?你是怎樣想的?
學(xué)生回答后,教師導(dǎo)入新課。進一步研究分數(shù)方面的知識。
二、發(fā)現(xiàn)概括
1、教學(xué)例1、
觀察一下這個式子,4個分數(shù)有什么不同?你知道其中那幾個分數(shù)是相等嗎?板書:==
追問:你是怎樣知道這幾個分數(shù)相等的?和它們相等的分數(shù)還有沒有?
2、教學(xué)例2
談話:請同學(xué)們拿出課前準備好的一張正方形的紙,指出:這些正方形紙都一樣大。提問:你能先對折,并涂出它的嗎?
學(xué)生折紙。涂色。
交流后,追問:你能通過繼續(xù)對折,找出和相等的其他分數(shù)嗎?
學(xué)生操作。組織交流。
在學(xué)生交流時,注意讓對折方法不同的學(xué)生充分展示,引導(dǎo)發(fā)現(xiàn):只有
對折次數(shù)相同,平均分的份數(shù)就相同,涂色部分就是相等的。
三、溝通聯(lián)系
引導(dǎo)觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子。分母是怎樣變化的?
學(xué)生觀察、思考,完成課本上的填空,再在小組內(nèi)交流。
學(xué)生交流后,教師集中指導(dǎo)觀察。
先從左往右看,是怎樣變?yōu)榕c它相等的的?
。ǚ帜赋2,分子乘2。)
根據(jù)分數(shù)的意義,”“表示把單位”1“平均分成2份,取其中的1份,而現(xiàn)在把單位”1“平均分成4份,也就是把原兩份中的每一份又平均分成2份,所以現(xiàn)在平均分成了2×2=4(份),現(xiàn)在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==
即原來把單位”1“平均分成2份,取1份,現(xiàn)在把平均分的份數(shù)和取的份數(shù)都擴大2倍,就得到。與的大小相等,分數(shù)值沒變。
(2)由到,分子、分母又是怎樣變化的?(把平均分的份數(shù)和取的份數(shù)都擴大了4倍。)==
(3)誰能用一句話說出這兩個式子的變化規(guī)律?
再從右往左看
是怎樣變化成與之相等的的`?==
又是怎樣變成的?(把平均分的份數(shù)和取的份數(shù)都縮小了4倍。)==
誰能用一句話說出這兩個式子的變化規(guī)律?
綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
這就是今天我們所學(xué)的”分數(shù)的基本性質(zhì)“(板書課題,出示”分數(shù)的基本性質(zhì)“)。
談話:你能根據(jù)分數(shù)的基本性質(zhì),再寫出一組相等的分數(shù)?
引導(dǎo)辨析:所寫的分數(shù)是否相等?你是怎樣想的?
提出要求:根據(jù)分數(shù)與除法的關(guān)系,你能用商不變的規(guī)律來說明分數(shù)的基本性質(zhì)嗎?
四、鞏固練習(xí)
練一練的第1題。
練一練的第2題
啄木鳥診所。(請說出理由)
分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。()
分數(shù)的分子和分母同時乘或者除以一個數(shù)(零除外),分數(shù)的大小不變。()
分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。()
小結(jié):從判斷題中我們可以看出,分數(shù)的基本性質(zhì)要注意什么?學(xué)到這兒,大家想一想,我們以前學(xué)過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?
五、課堂總結(jié)
這節(jié)課你學(xué)到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的?
課堂作業(yè)
六、練習(xí)十一第3題
分數(shù)的基本性質(zhì)教案6
分數(shù)是數(shù)學(xué)中的一個重要概念,它可以表示一個數(shù)被另一個數(shù)平均分成若干份的結(jié)果。分數(shù)的基本性質(zhì)包括分數(shù)的大小比較、分數(shù)的加減乘除、分數(shù)的化簡和分數(shù)的約分等方面。
一、分數(shù)的大小比較
分數(shù)的.大小比較是指兩個分數(shù)的大小關(guān)系。當(dāng)分母相同時,分子越大的分數(shù)越大;當(dāng)分母不同時,可以通過通分后比較分子的大小來確定大小關(guān)系。
例如,比較1/3和1/4的大小關(guān)系,可以將它們通分為4/12和3/12,由于4/12大于3/12,所以1/3大于1/4。
二、分數(shù)的加減乘除
分數(shù)的加減乘除是指對分數(shù)進行加、減、乘、除的運算。其中,加減法需要先通分,然后將分子相加或相減,再將結(jié)果約分;乘法則直接將分子相乘,分母相乘,再將結(jié)果約分;除法則將除數(shù)的分子分母顛倒,然后乘以被除數(shù)的分數(shù),最后將結(jié)果約分。
例如,計算1/3+1/4的結(jié)果,需要通分為4/12+3/12=7/12,然后將7/12約分為1/6。
三、分數(shù)的化簡
分數(shù)的化簡是指將一個分數(shù)表示為最簡分數(shù)的形式。最簡分數(shù)是指分子和分母沒有公因數(shù)的分數(shù);喎謹(shù)的方法是將分子和分母同時除以它們的最大公約數(shù)。
例如,將6/9化簡為最簡分數(shù),需要先求出6和9的最大公約數(shù)為3,然后將分子和分母同時除以3,得到2/3。
四、分數(shù)的約分
分數(shù)的約分是指將一個分數(shù)化為與它相等的最簡分數(shù)的形式。約分分數(shù)的方法是將分子和分母同時除以它們的公因數(shù),直到分子和分母沒有公因數(shù)為止。
例如,將12/18約分為最簡分數(shù),需要先求出12和18的公因數(shù)為6,然后將分子和分母同時除以6,得到2/3。
綜上所述,分數(shù)的基本性質(zhì)包括大小比較、加減乘除、化簡和約分等方面。掌握這些基本性質(zhì)對于學(xué)習(xí)數(shù)學(xué)和解決實際問題都有很大的幫助。
分數(shù)的基本性質(zhì)教案7
教學(xué)目標
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
(三)培養(yǎng)學(xué)生觀察、分析和抽象概括的能力,滲透事物是相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
教學(xué)重點和難點
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)歸納分數(shù)的基本性質(zhì),運用性質(zhì)轉(zhuǎn)化分數(shù)。
教學(xué)用具
教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給
學(xué)具:每位同學(xué)準備三張相同的長方形紙片。
教學(xué)過程設(shè)計
(一)復(fù)習(xí)準備
1.口答:(投影片)
根據(jù) 120÷30=4,不用計算直接說出結(jié)果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.說一說依據(jù)什么可以不用計算直接得出商的?
3.說出商不變的性質(zhì)。
教師:除法有商不變性質(zhì),分數(shù)與除法又有關(guān)系,分數(shù)有沒有類似的性質(zhì)呢?下面就來研究這個問題。
(二)學(xué)習(xí)新課
1.分數(shù)基本性質(zhì)。
(1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的`兩張白紙,重疊放在一起請學(xué)生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。
教師請同學(xué)取出自己準備的三張長方形紙,并比一比是不是同樣大。
教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數(shù)表示出來。
學(xué)生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:
教師:請比較這三個分數(shù)的大?
你根據(jù)什么說這三個分數(shù)相等?
學(xué)生口答后老師用等號連結(jié)上面三個分數(shù)。
(2)教師:這幾個分數(shù)的分子和分母都不相同,但三個分數(shù)的大小是相等的,下面我們來研究在保持分數(shù)大小不變的情況下,分子分母的變化有沒有什么規(guī)律?
請同學(xué)觀察,思考和討論。投影出思考題:
如何?
結(jié)果如何改變,那么分子,分母同時乘以4,乘以5,乘以6呢?規(guī)律是什么?
學(xué)生口答后,教師小結(jié)并板書:分數(shù)的分子和分母同時乘以相同的數(shù),分數(shù)大小不變。(留出“或者除以”的空位。)的變化規(guī)律是什么?(學(xué)生小組討論后匯報)
教師板書:
教師:試說一說這時分子、分母的變化規(guī)律?
學(xué)生口答后老師小結(jié):分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。板書補出“除以”。
教師:想一想,分數(shù)的分子、分母都乘以或除以0可以嗎?為什么?(不行。)
(3)請根據(jù)上面的研究,說一說你發(fā)現(xiàn)了什么規(guī)律?請概括地說一說。
學(xué)生口述分數(shù)基本性質(zhì)的內(nèi)容,老師把板書補充完整。
教師:這就是分數(shù)的基本性質(zhì),是這節(jié)課研究的問題。板書出課題:分數(shù)基本性質(zhì)。
請學(xué)生打開書讀兩遍。
教師:想一想,如何用整數(shù)除法中商不變的性質(zhì)說明分數(shù)基本性質(zhì)?(舉例說明)
用學(xué)生自己的例題說明后,用投影片再說明:
口答填空:(投影片)
2.把一個分數(shù)化成大小相等,而分子或分母是指定數(shù)的分數(shù)。
分子應(yīng)怎樣變化?誰隨著誰變?
化?誰隨著誰變?
教師:上面兩個分數(shù)的變化依據(jù)是什么?
(2)口答練習(xí):(學(xué)生口答,老師板書。)
教師:利用分數(shù)基本性質(zhì),可以把分數(shù)化成大小相等而分子或分母是指定數(shù)的分數(shù)。
(三)鞏固反饋
1.口答:(投影片)
2.在括號里填上“=”或“≠”。(投影)
3.在( )里填上適當(dāng)?shù)臄?shù)。(投影)
4.判斷正誤,并說明理由。
(四)課堂總結(jié)與課后作業(yè)
1.分數(shù)基本性質(zhì)。
2.把分數(shù)化成大小相同而分子或分母是指定數(shù)的分數(shù)的方法。
3.作業(yè):課本108頁練習(xí)二十三,1,2,4,5。
課堂教學(xué)設(shè)計說明
分數(shù)基本性質(zhì)是在分數(shù)大小不變的前提下研究分子、分母的變化規(guī)律。所以在教學(xué)過程中,抓住“變化”作為主線,設(shè)計思考題引導(dǎo)學(xué)生觀察、對比、分析,使學(xué)生在變化中找出規(guī)律、概括出分數(shù)的基本性質(zhì)。安排例2,是讓學(xué)生運用規(guī)律使分數(shù)產(chǎn)生變化。這樣,從兩方面方面加深學(xué)生對分數(shù)基本性質(zhì)的理解。
在學(xué)生掌握了分數(shù)基本性質(zhì)后,安排他們舉例討論,以溝通分數(shù)基本性質(zhì)和商不變性質(zhì)之間的內(nèi)在聯(lián)系,便于學(xué)生能把新舊知識融為一體。
在整個學(xué)習(xí)過程中都是學(xué)生活動為主,這樣有利于培養(yǎng)學(xué)生觀察、分析和抽象概括的能力。
新課教學(xué)分為兩部分。
第一部分學(xué)習(xí)分數(shù)基本性質(zhì)。分三層,通過學(xué)生活動,學(xué)生從直觀上認識到分子、分母不相同的分數(shù)有可能相等;研究分子、分母的變化規(guī)律;概括分數(shù)基本性質(zhì),并用商不變性質(zhì)來說明。
第二部分是應(yīng)用分數(shù)基本性質(zhì),使分數(shù)按要求進行變化。分兩層,根據(jù)分母需要,確定分子、分母需要擴大或縮小的倍數(shù);根據(jù)分子需要,確定分子、分母需要擴大或縮小的倍數(shù)。
分數(shù)的基本性質(zhì)教案8
教學(xué)目標
1、理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)的基本性質(zhì)與整數(shù)除法中商不變的性質(zhì)之間的聯(lián)系。
2、能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。
3、培養(yǎng)學(xué)生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。
教學(xué)重難點
理解分數(shù)基本性質(zhì)的含義,掌握分數(shù)基本性質(zhì)的推導(dǎo)過程。運用分數(shù)的基本性質(zhì)解決實際問題。
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知,溝通聯(lián)系。
1、口答下面各題。
12÷3 =(12×10)÷(3×□)
18 ÷6 =(18÷□)÷(6÷ 3)
你是根據(jù)什么填的?還記得商不變的規(guī)律是怎樣敘述的嗎?
4 ÷5=()÷3
你是根據(jù)什么填的?分數(shù)與除法之間有什么關(guān)系?
2、猜想。
同學(xué)們,在除法里,有商不變的規(guī)律,而分數(shù)與除法是有聯(lián)系的,那么,請同學(xué)們猜測一下,在分數(shù)里會不會也有類似的性質(zhì)存在呢?
在分數(shù)里究竟有沒有類似的性質(zhì)存在,如果有,它又是怎樣的呢?今天我們一起來研究這個問題。
二、探究新知,揭示規(guī)律。
1、感知規(guī)律
。1)動手操作
、傩〗M合作分別把三張一樣大的圓形紙片平均分成兩份、四份、八份。
、谕可喊哑骄殖蓛煞莸膶⑵渲械囊环萃可项伾,把平均分成四份的'將其中的兩份涂上顏色,把平均分成八份的將其中的四份涂上顏色。
、郯淹可糠钟梅謹(shù)表示出來。
④比一比:這3個分數(shù)之間有什么關(guān)系?
生通過動手操作,發(fā)現(xiàn)這三個分數(shù)之間是相等的關(guān)系。
學(xué)生匯報后,教師用電腦演示。
生觀察分子分母變化規(guī)律發(fā)現(xiàn):分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)大小不變。
。2)繼續(xù)發(fā)現(xiàn)
師課件出示三個大小形狀完全相同的長方形,請學(xué)生用分數(shù)表示涂色部分,并觀察涂色部分,看有什么發(fā)現(xiàn)。
生發(fā)現(xiàn)涂色部分是相同的。
觀察分子分母的變化規(guī)律發(fā)現(xiàn):分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。
也不能同時除以0。
2、抽象概括,總結(jié)規(guī)律。
引導(dǎo)學(xué)生觀察、比較,回憶知識的形成過程,總結(jié)概括出分數(shù)的基本性質(zhì)。不完善的互相補充。(討論為什么0除外)
想一想:根據(jù)分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?
3、運用規(guī)律,自學(xué)例題。
。1)分組討論。
把和分別化成分母是12而大小不變的分數(shù)。分子應(yīng)怎樣變化?變化的依據(jù)是什么?
。2)匯報討論情況。
。3)小結(jié):我們可以應(yīng)用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。
三、多層練習(xí),鞏固深化
1、基本練習(xí)。
根據(jù)分數(shù)的基本性質(zhì),把下列等式補充完整。
學(xué)生口答后,要求說出是怎樣想的。
2、判斷。(手勢表示,并說明理由。)
(1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。()
(2)把15/20的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()
。3)的分子乘以3,分母除以3,分數(shù)的大小不變。()
3、把2/3和4/24化成分母是12而大小不變的分數(shù)。
四、今天你有哪些收獲。
分數(shù)的基本性質(zhì)教案9
教學(xué)目標 :
1、理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2、理解和掌握分數(shù)的基本性質(zhì)。
3、培養(yǎng)學(xué)生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>
4、較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
教學(xué)重點 :理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點 :能熟練、靈活地運用分數(shù)的基本性質(zhì)。
教具準備 :“分數(shù)基本性質(zhì)”課件,正方形紙片,彩色粉筆。
教學(xué)過程:
一、巧設(shè)伏筆、導(dǎo)入新課。
1、出示課件:120÷30的商是多少?
被除數(shù)和除都擴大3倍,商是多少?
被除數(shù)和除數(shù)都縮小10倍呢?(出示后學(xué)生回答,課件顯示答案)
2、在下面□里填上合適的數(shù)。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
、傧胍幌,你是根據(jù)什么填上面的數(shù)的?(生口答)
。ㄕn件:商不變的性質(zhì))
、谏滩蛔兊男再|(zhì)是什么?(生口答)
、鄢ㄅc分數(shù)之間有什么關(guān)系?
生答,師板書:被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)
二、討論探究,學(xué)習(xí)新知。
1、課件出示:1÷2= (怎么寫)
、1/2與( )相等?你能想出哪些數(shù)?有辦法怎么讓它們相等嗎?
讓生合作探討。
、谏鍪敬鸢福1/2=2/4=4/8……
有選擇填入上數(shù)。
2、引導(dǎo)學(xué)生證明它們相等。
、俪稣n件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。
。ㄕn件演示)
上述演示讓學(xué)生感知后,問你發(fā)現(xiàn)了什么?(生討論)
、谠倌嫦蛩伎,觀察板書和課件。
問你又發(fā)現(xiàn)了什么?(生討論)
得到:(板書)分數(shù)的分子和分母同時乘上或者除以相同的數(shù),分數(shù)的大小不變。
3、驗證、補充、強調(diào)
、俪鍪2/5=2×2/5=4/5,對嗎?(驗證分數(shù)的基本性質(zhì)),為什么?強調(diào)“同時”(在黑板板書上用彩筆勾劃強調(diào))。
、诔鍪3/4=3×3/4×4=9/16,對嗎?為什么?強調(diào)“相同的數(shù)”。
、塾疫吜惺叫袉?為什么?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。
、軞w納出上述板書為“分數(shù)的基本性質(zhì)”(課題)。
4、信息反饋、糾正、鞏固。
、倥袛啵ǔ鍪菊n件)
A、分數(shù)的分子,分母都乘上或除以相同的數(shù),分數(shù)的大小不變。
B、把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。
C、3/4的分子乘上3,分母除以3,分數(shù)的.大小不變。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,強調(diào)重點,加以鞏固。
、谕瓿烧n本108頁例2(學(xué)生嘗試練習(xí))
強調(diào)運用了什么性質(zhì)?課件:“分數(shù)的基本性質(zhì)”醒目強調(diào)。
三、實踐練習(xí),信息綜合
1、練一練
、3/5=3×( )/5×( )=9/( )
、7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、練習(xí)二十二1—3題。
四、課堂總結(jié)、整體感知。
。ㄔ谛畔⒕C合后,重點選擇性小結(jié),形成整體),這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?可以應(yīng)用在什么地方?這與我們學(xué)習(xí)過的什么性質(zhì)有聯(lián)系?
五、發(fā)散鞏固、自主選擇。
想一想:(選擇一道你喜歡的題做)
課件:①與1/2相等的分數(shù)有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)。
、9/24和20/32哪能一個數(shù)大一些,你能講出判斷的依據(jù)嗎
分數(shù)的基本性質(zhì)教案10
教學(xué)目標:
1、理解并掌握比的基本性質(zhì),知道“最簡單的整數(shù)比”,會根據(jù)比的基本性質(zhì)將比化成最簡單的整數(shù)比。
2、培養(yǎng)學(xué)生自主遷移、自主構(gòu)建知識的能力。
3、搞清求比值和化簡比的區(qū)別與聯(lián)系,建立事物間相互聯(lián)系的觀念,對學(xué)生進行辨證唯物主義的思想教育。
教學(xué)重點:比的基本性質(zhì)和化簡比
教學(xué)難點:求比值和化簡比的區(qū)別和聯(lián)系
教具:小黑板
一、故事引入
引言:同學(xué)們知道猴子最愛吃桃子,下面就來看一看一個猴王分桃的故事。猴王管轄的猴群分為三個組,一組有4只猴分得3個桃,二組有8只猴分得6個桃,三組有12只猴,分得9個桃。請問猴王的'分配公平嗎?
讓學(xué)生思考:每只猴分得幾個桃?桃與猴的比怎樣?比值是多少?
教師根據(jù)學(xué)生的回答板書:
3÷4 6÷8 9÷12 3:4 6:8 9:12
=3/4 =6/8 =9/12 =3/4 =6/8 =9/12
1、三個除法算式有什么關(guān)系?
2、三個分數(shù)的值相等嗎?
3、三個比相等嗎?(相等)為什么?
4、猴王的分配公平嗎?(公平)為什么?
是!猴王的分配是公平的,由于它的公平才被眾猴推為猴王。
三、探討規(guī)律
師:上面的三個比什么變了?什么沒變?
生:比的前后項變了,比值沒變。
師:比的前后項是如何變化的?變化有沒有一定的規(guī)律可循?下面我們來共同尋找、共同探討。
1、首先讓學(xué)生從左往右觀察前后項的變化:前項3→6(3→9、6→9),后項4→8(4→12、8→12)分別是怎么變化的?讓學(xué)生通過“觀察→思考→討論”后回答,教師根據(jù)學(xué)生的回答板書:
3:4=(3×2):(4×2)=6:8
3:4=(3×3):(4×3)=9:12
6:8=(6×1.5):(8×1.5)=9:12
上面的變化誰能用一句概括性的語言表達出來,讓學(xué)生討論回答,教師板書:
2、然后從右往左觀察前后項又是如何變化的:
9:12=(9÷3):(12÷3)=3:4
6:8=(6÷2):(8÷2)=3:4
9:12=(9÷1.5):(12÷1.5)=6:8
3、討論:上面同乘以或除以的“數(shù)”是不是任何數(shù)都可以?
4、揭示課題:這就是我們今天學(xué)習(xí)的“比的基本性質(zhì)”。
5、嘗試:
。1)、4:5的前項擴大2倍,要使比值不變,比的后項應(yīng)該( )
。2)、如果3:2的后項變成15,要使比值不變,比的前項應(yīng)該為( )
四、運用規(guī)律
3:4、6:9、8:12這三個比中,比的前后項為互質(zhì)數(shù)的是哪個比?(3:4),像這種前后項為互質(zhì)數(shù)的比叫最簡整數(shù)才(簡稱最件簡比)。(板書)
1、化簡比。
出示例1:把下面各比化成最簡單的整數(shù)比。
。1)14:21 (2)1/6:2/9 (3)0.25:1.2 30:10
讓學(xué)生討論14:21如何化簡?
2、小結(jié)化簡比的方法。
師:誰來說說整數(shù)比如何化簡,分數(shù)比如何化簡,小數(shù)比如何化簡?化簡比的方法是什么?
3、比較化簡比和求比值的異同。
強調(diào):比值是一個數(shù),化簡比仍是一個比。(板書)
五、強化認識
1、判斷:
、、1/2:1/4化簡后得2( )
、凇⒈鹊那绊椇秃箜椡瑫r乘以或除以相同的數(shù),比值不變( )
、、兩個數(shù)的比值是1/3,這兩個數(shù)同時擴大5倍,它們的比值是1/3( )
、、圓周率表示一個圓的周長和直徑的比 ( )
2、填空。(小黑板出示)
。1)、3÷4=()/()=()÷()=21:()
(2)、兩個的比值是5/6,這兩個數(shù)的最簡比是()。
3、甲數(shù)是乙數(shù)的50%,用比的角度來描述這兩個數(shù)的關(guān)系。
4、А、Б兩圓的重疊部分是圓А的1/7,也是圓Б的1/5,求А、Б兩圓的面積比
六、總結(jié)全課
今天我們學(xué)習(xí)了什么?應(yīng)用它可以解決什么問題?化簡比和求比值是否一樣?
分數(shù)的基本性質(zhì)教案11
教學(xué)目標
。1)使學(xué)生理解、掌握分數(shù)的基本性質(zhì)。
(2)學(xué)生把一個分數(shù)化成用指定的分母(分子)做分母(分子),而大小不變的分數(shù),為學(xué)習(xí)約分和通分打下基礎(chǔ)。
教學(xué)重點、難點
重點、難點:理解、掌握分數(shù)的基本性質(zhì)。
教具、學(xué)具準備
教學(xué)過程
備注
一、復(fù)習(xí)
1、說出3/4所表示的意義。
2、說出下面各式的商,并說出是根據(jù)什么知識?(根據(jù)商不變的性質(zhì))
150÷50=3
(150×2)÷(50×2)=
。150÷2)÷(50÷2)=
。150×5)÷(50×5)=
。150÷5)÷(50÷5)=
二、引入新課
我們學(xué)習(xí)了商不變性質(zhì),又掌握了分數(shù)與除法的關(guān)系。那么分數(shù)有沒有類似整數(shù)除法的性質(zhì)呢?今天我們來研究“分數(shù)的基本性質(zhì)”。(板書課題)
三、教學(xué)新課
1、教學(xué)例1,比較3/4、6/8和9/1的大小。
。1)折一折
用同樣大小的三張紙條,分別折出3/4、6/8和9/12。
。2)比一比。
比較3/4、6/8和9/12這三個分數(shù)的大小。從折紙和課本圖中可看出:3/4=6/8=9/12。
9/12→6/8→3/4,分子、分母發(fā)生了怎樣的變化?
9/12=9÷3/12÷3=3/4,6/8=6÷2/8÷2=3/4
你從上面的計算中發(fā)現(xiàn)了什么?
(4)聯(lián)系分數(shù)與除法的關(guān)系、商不變性質(zhì),怎樣證明這幾個分數(shù)的大小不變?
3/4=3÷4=(3×2)÷(4×2)=6/8
3/4=3÷4=(3×3)÷(4×3)=9/12
6/8=6÷8=(6÷2)÷(8÷2)=3/4
9/12=9÷12=(9÷3)÷(12÷3)3/4
你發(fā)現(xiàn)了什么?
教學(xué)過程
備注
。5)議論。
3/4的分母和分子都乘以或者都除以0,會得到怎樣的結(jié)果?分數(shù)的大小會變嗎?
0乘以任何數(shù)都得0,如果分數(shù)的分子和分母都乘以0,分子、分母都得0,但分母不能是0。因為0不能做除數(shù),所以分數(shù)的分子、分母不能除以0。因此,分數(shù)的分子、分母都乘以或者除以相同的數(shù)時,0必須除外。
。6)師生共同歸納分數(shù)的基本性質(zhì)(見課本)。
。7)嘗試練習(xí)。
“練一練”第1題,“把下列分數(shù)的變化過程寫完整!
1/6=()/()3/()4/7=()/()=()3/5
8/24=()/()2/()25/60()/()=()/12
第2題,在下面括號里填上適當(dāng)?shù)臄?shù)。
3/2=()/9,5/15=()/3,8/12=()/6,3/5=()/207/9=()21/()12/60=(),7/8=35/(),4/36=2/()
2、教學(xué)例2。
(1)把1/3和16/24分別化成分母是6,而大小不變的分數(shù)。
A、啟發(fā)學(xué)生思考:這道題的要求是什么?分母變了,分數(shù)大小怎樣才能不變?這樣做的根據(jù)是什么?
B、學(xué)生演算:1/3=1×2/3×2=2/6
16/24=16/4/24÷4=4/6
。2)試一試,把5/30和4/28分別化成分子是1的分數(shù)。
5/30=5÷5/30÷5=1/6,4/28=4÷4/28÷4=1/7
四、鞏固練習(xí)
1、把下面的分數(shù)化成分母是60,而大小的.分數(shù)。
。ā熬氁痪殹钡3題)
2/3、1/5、11/12、4/15
2、把下面的分數(shù)化成分子是1,而大小不變的分數(shù)。(第4題)
4/12、7/28、9/45、17/513
3、在下面分數(shù)中找出的分數(shù),用線連起來。
1/2、8/20、4/12、2/5、10/20、13/39
五、課堂總結(jié)(略)
六、作業(yè)《作業(yè)本》
分數(shù)的基本性質(zhì)是分數(shù)知識的重點。教學(xué)中充分利用圖形,讓學(xué)生直觀地感知到分子、分母變了,但分數(shù)所表示的大小沒有變,再通過研究分子、分母的變化規(guī)律,從而歸納出分數(shù)的基本性質(zhì)。此外,要把分數(shù)的基本性質(zhì)和以前學(xué)過的商不變性質(zhì)聯(lián)系起來了,加深對性質(zhì)的理解。
分數(shù)的基本性質(zhì)教案12
本單元教學(xué)分數(shù)的基本性質(zhì),約分、通分,比較分數(shù)的大小等知識,讓學(xué)生進一步理解分數(shù)的意義,并為分數(shù)四則計算作必要的準備。分數(shù)的基本性質(zhì)是約分和通分的依據(jù),比較幾個異分母分數(shù)的大小往往先通分。根據(jù)知識間的聯(lián)系,全單元內(nèi)容分三部分編排。
第60~64頁分數(shù)的基本性質(zhì),約分。
第65~68頁通分,比較分數(shù)的大小。
第69~73頁全單元內(nèi)容的整理與練習(xí),實踐與綜合應(yīng)用。
1、 精心安排探索分數(shù)基本性質(zhì)的教學(xué)活動。
例1和例2教學(xué)分數(shù)的基本性質(zhì),按“呈現(xiàn)現(xiàn)象——發(fā)現(xiàn)規(guī)律——聯(lián)系相關(guān)知識”的線索組織教學(xué)活動。
例1的圖形是四個大小相等的圓,各個圓平均分的份數(shù)不同。用分數(shù)表示每個圓里的涂色部分,分別寫出13、12、26、39四個分子、分母都不相同的分數(shù)。比較各個圓里的涂色部分,能夠看到從左往右第1、3、4個圓的涂色部分大小相等,由此得到寫出的分數(shù)大小相等,即13=26=39。這道例題讓學(xué)生初步感受分子、分母都不相同的分數(shù)中,有些分數(shù)的大小相等,有些分數(shù)的大小不等。并對分子、分母不等,但分數(shù)大小相等的現(xiàn)象產(chǎn)生興趣。
例2承接例1,在對折正方形紙的活動中又得出一些與12大小相等的分數(shù),分別寫成等式12=24、12=48、12=816,再次讓學(xué)生感受分子、分母不同的分數(shù),大小可以相等。寫出的三個等式,是研究分數(shù)基本性質(zhì)的素材。
教材分三步引導(dǎo)學(xué)生發(fā)現(xiàn)分數(shù)的基本性質(zhì)。第一步研究例2每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的,感受變化是有規(guī)律的。在記錄變化的方式時,教材寫出了乘號或除號,啟示學(xué)生從分子、分母乘或除以一個數(shù)的角度去觀察。讓學(xué)生在括號里填數(shù),體驗分子、分母乘或除以的是相同的數(shù),有助于發(fā)現(xiàn)規(guī)律。對每個等式的研究,既從左往右觀察,也從右往左觀察,充分利用了素材,從中獲得盡量多的感性知識。填寫連等式12=()()=()()=()(),把12、24、48、816有序地排列起來,能從中得到許多感受。如,12的分子、分母都乘2得到24,24的分子、分母都乘2得到48,48的分子、分母乘2得到816,照這樣還能寫出1632、3264……這些分數(shù)的大小都相等。又如,與12大小相等的分數(shù)有無數(shù)多個,每個分數(shù)的分子、分母除以相同的數(shù)都能得到12。
第二步利用例2的經(jīng)驗觀察例1等式中的三個分數(shù)的分子、分母是怎樣變化的,體會這些分數(shù)相等的原因和例2一樣。而且分子、分母乘或除以的數(shù),除了2、4、8,還可以是3和其他的數(shù)。這樣,對分數(shù)基本性質(zhì)的感受就更豐富了。
第三步概括兩道例題中分子、分母變化但分數(shù)大小不變的規(guī)律。在充分交流之后,閱讀教材里的敘述,理解“同時”乘或除以“相同”的數(shù)這些規(guī)范的語言,知道這個規(guī)律叫做分數(shù)的基本性質(zhì)。聯(lián)系除數(shù)不能是0,明白分數(shù)的分子、分母同時乘或除以的數(shù)不能是0,使得到的規(guī)律更嚴密。
在得出分數(shù)的基本性質(zhì)后,教材還安排了兩項活動: 一是根據(jù)分數(shù)的基本性質(zhì)寫出一組分數(shù),要先任意寫一個分數(shù),再把它的分子、分母同時乘或除以相同的數(shù),得到大小不變的分數(shù)。寫出的一組分數(shù),可以是兩個分數(shù),也可以是幾個分數(shù)。這項活動起鞏固分數(shù)基本性質(zhì)的作用,還滲透了通分、約分所需要的思想。二是用整數(shù)除法中商不變的規(guī)律說明分數(shù)的基本性質(zhì),由于除法里的被除數(shù)和除數(shù)分別相當(dāng)于分數(shù)的分子和分母,所以除法中商不變的規(guī)律和分數(shù)的基本性質(zhì)是一致的。溝通這兩個知識,有助于學(xué)生建立新的認知結(jié)構(gòu),進一步理解分數(shù)的基本性質(zhì)。
練習(xí)十一第1~3題配合分數(shù)基本性質(zhì)的教學(xué)。第1題繼續(xù)體驗分數(shù)基本性質(zhì)的內(nèi)容,在方格紙上涂色表示1224,再說出涂色部分還表示612、48、36、24、12等分數(shù),還要從不同角度說明這些分數(shù)的大小相等。如,因為這些分數(shù)是用同一個涂色部分表示的,所以大小相等;又如,這些分數(shù)可以把1224的分子、分母同時除以2、3、4、6或12得出,所以大小相等。第2題應(yīng)用分數(shù)的基本性質(zhì)判斷同組的兩個分數(shù)是不是相等,其中兩組分數(shù)的分子、分母沒有除以相同的數(shù),是學(xué)生初學(xué)分數(shù)的基本性質(zhì)時容易出現(xiàn)的錯誤。這些反例能加強對分數(shù)基本性質(zhì)的理解。第3題運用分數(shù)的基本性質(zhì)對分數(shù)進行等值變化,是通分、約分需要的基本功。
2、讓學(xué)生把分數(shù)等值改寫,理解約分和通分。
例3教學(xué)約分,分三步安排。首先看圖寫出和1218相等,而分子、分母都比較小的分數(shù),為理解約分的含義搭建認知平臺。教學(xué)分數(shù)基本性質(zhì)的時候,曾經(jīng)用幾個分子、分母不同,但大小相等的.分數(shù)表示同一個圖形里的涂色部分,F(xiàn)在聯(lián)系這個經(jīng)驗教學(xué)約分,寫出的分數(shù)分子、分母都應(yīng)該比1218的分子、分母小,體會大小相等的分數(shù)中,分子、分母小的分數(shù)比較簡單。這種體會在說說寫分數(shù)時的思考能夠獲得,如長方形里的涂色部分,可以看作長方形的1218,也可以看作長方形的69、46或23。顯然,這個涂色部分用23表示最簡便。然后教學(xué)什么是約分和怎樣約分,是例題的主要內(nèi)容。關(guān)于約分的含義,聯(lián)系1218與69、46、23的關(guān)系,突出了兩點: 與原來的分數(shù)大小相等,分子、分母都比原來的分數(shù)小。關(guān)于約分的方法,示范了分步約分,也示范了一次約分,讓學(xué)生從自己的實際出發(fā),選擇適宜自己的約分方法。教學(xué)約分的意義和方法,都是學(xué)生有意義地接受新知識。要充分體驗約分是應(yīng)用分數(shù)的基本性質(zhì)化簡分數(shù),不改變分數(shù)的大小。還要注意約分的書寫格式,分子和分母分別除以它們的公因數(shù),得到的商(即新的分子和分母)應(yīng)該寫在適當(dāng)?shù)奈恢蒙。最后?3為例教學(xué)最簡分數(shù),指出約分通常要約成最簡分數(shù)。
練習(xí)十一第4~7題配合例3的教學(xué)。正確約分需要兩個能力: 一是看出分子與分母的公因數(shù),第4題為此而安排。把分數(shù)的分子、分母同時除以2、5或3,是最常用的約分方法,學(xué)生對2、5、3的倍數(shù)的特征比較熟悉,因此先觀察分子、分母有沒有公因數(shù)2、5、3。至于分子與分母同時除以7、11、13等數(shù)的約分,稍后再作安排。二是識別一個分數(shù)是不是最簡分數(shù)。如果不是最簡分數(shù)則需要約分,如果是最簡分數(shù)則不能約分,第5題進行這方面的判斷。這兩個能力是相互依存、相互影響的。判斷一個分數(shù)不是最簡分數(shù),一定發(fā)現(xiàn)了分子、分母除1以外的公因數(shù)。反之,分子與分母除1以外,找不到其他公因數(shù),就判斷這個分數(shù)是最簡分數(shù)。約分的時候,必須把分子、分母除以相同的數(shù),學(xué)生往往在這一點上發(fā)生錯誤,第6題能給學(xué)生這方面的體會。
第8~15題是分數(shù)的意義、基本性質(zhì)的綜合練習(xí)。第8、9題在分數(shù)與除法相互改寫時,還要應(yīng)用分數(shù)的基本性質(zhì)。第10題把最簡分數(shù)與真分數(shù)兩個概念聯(lián)系起來,才能理解最簡真分數(shù)。第11題先約分,再比較大小就非常容易。第12~15題的分數(shù)加、減計算,計量單位改寫,小數(shù)化成分數(shù),解決求一個數(shù)是另一個數(shù)的幾分之幾的實際問題,都提出把結(jié)果約成最簡分數(shù)的要求。增加習(xí)題的知識容量,把新舊知識結(jié)合應(yīng)用,能幫助學(xué)生溫故知新,不斷提高能力。
例4教學(xué)通分,重點放在通分的含義和方法上。把34和56改寫成分母相同而大小不變的分數(shù),是一個具有挑戰(zhàn)性的問題。學(xué)生對分數(shù)改寫成大小不變的另一個分數(shù)并不陌生,在學(xué)習(xí)分數(shù)的基本性質(zhì)的時候,曾經(jīng)多次進行過這樣的改寫。把兩個分母不同的分數(shù)改寫成分母相同的分數(shù),是首次遇到的新問題。思考的焦點是改寫成分母是幾的分數(shù),只要確定新的分母,分別改寫兩個分數(shù)就容易了。教材讓學(xué)生憑數(shù)感,主動聯(lián)系公倍數(shù)的知識和分數(shù)的基本性質(zhì),獨立進行改寫分數(shù)的活動。把兩個分數(shù)改寫成分母相同、大小不變的分數(shù)就是通分?梢,這道例題未教通分之前就讓學(xué)生嘗試通分,先積累把34和56都化成分母是12或分母是24的分數(shù)的切身體驗,為理解通分的含義,有意義地接受教材關(guān)于通分的講述作了充分的準備。
公分母是通分的關(guān)鍵。例題有層次地教學(xué)公分母的知識: 首先聯(lián)系34和56的改寫,讓學(xué)生知道12、24是公分母,是34和56的分母的公倍數(shù);然后比較34和56以12為公分母和以24為公分母的改寫,體會什么數(shù)作公分母比較簡便,得出一般用兩個分母的最小公倍數(shù)作公分母。
例4只教學(xué)通分的含義和關(guān)于公分母的知識,不再另行教學(xué)怎樣通分。這是因為34和56改寫成分母是12與24的分數(shù)就是通分,不需要再重復(fù)。學(xué)生經(jīng)過“試一試”,應(yīng)用通分的知識,能夠掌握通分的步驟與方法。同時又考慮到“試一試”畢竟是學(xué)生第一次進行通分,所以在怎樣表達兩個分數(shù)的公分母、怎樣應(yīng)用分數(shù)的基本性質(zhì)以及書寫通分的過程和結(jié)果的一般格式等方面,都給予較具體的指導(dǎo)。
練習(xí)十二第1~4題配合例4的教學(xué)。第1題兩個長方形里的涂色部分分別用12和23表示,這兩個分數(shù)通分后分別化成36和46。在兩個長方形里表示出通分的結(jié)果,讓學(xué)生聯(lián)系直觀圖形體會通分的意義,感受異分母分數(shù)化成同分母分數(shù),便于比較和計算。第2題是尋找公分母的基礎(chǔ)練習(xí),進一步明白兩個異分母分數(shù)的公分母,是它們分母的最小公倍數(shù)。把求最小公倍數(shù)的經(jīng)驗應(yīng)用到求公分母上來。第3題讓學(xué)生深刻體會兩點: 一是通分不能改變分數(shù)的大小,通分后的分數(shù)必須與原來分數(shù)的大小相等,否則會發(fā)生類似第(1)小題的錯誤;二是通分時的公分母要用兩個分數(shù)分母的最小公倍數(shù),像第(2)小題那樣的通分不夠簡單。
3、 比較分數(shù)的大小,體驗策略與方法的多樣性。
在三年級的教材里,已經(jīng)教學(xué)借助圖形比較同分母分數(shù)的大小和分子是1的異分母分數(shù)的大小。在本冊教材“認識分數(shù)”時,比較了一個分數(shù)與一個小數(shù)的大小。所以說,學(xué)生已經(jīng)有一些比較分數(shù)大小的經(jīng)驗。在此基礎(chǔ)上,例5教學(xué)比較兩個分數(shù)的大小,有兩個顯著的特點: 一是在現(xiàn)實情境中收集數(shù)學(xué)信息,把實際問題抽象成數(shù)學(xué)問題?赐槐竟适聲》伎戳诉@本書的35,小明看了這本書的49。這兩個分數(shù)都把一本故事書看作單位“1”,分別平均分成5份和9份,看了其中的3份和4份。因此,比誰看的頁數(shù)多,只要比較35和49這兩個分數(shù)的大小。例題非常重視這些思考活動,提示學(xué)生想到“比較這兩個分數(shù)的大小”,用數(shù)學(xué)的方法解決實際問題。在這樣的過程中,能回憶起有聯(lián)系的知識,激活相關(guān)的技能。二是先讓學(xué)生獨立解決問題,再交流方法,鼓勵策略、方法多樣化。35與49是分子、分母都不相同的分數(shù),比較它們的大小對學(xué)生來說是新的問題。聯(lián)系分數(shù)的意義、通分和分數(shù)化成小數(shù)等知識,能夠找到許多解決問題的方法。讓學(xué)生獨立解決新穎的問題,有利于創(chuàng)新精神和實踐能力的發(fā)展。各種方法都很有特色,第一種方法數(shù)形結(jié)合,在相同的長方形里分別表示兩個分數(shù),直觀看出哪個分數(shù)比較大。第二種方法及時應(yīng)用學(xué)到的通分知識,把異分母分數(shù)化成同分母分數(shù)進行比較,運用了轉(zhuǎn)化的策略。第三種方法以12為中介,把兩個分數(shù)分別與12比較大小,間接得到35和49的大小關(guān)系,思維靈活、快捷,策略巧妙。學(xué)生中還會有其他的方法,組織充分的交流,相互理解和借鑒,能體驗解決問題策略的多樣性。
比較分數(shù)大小的練習(xí),安排很有層次。在鞏固基礎(chǔ)知識、掌握基本技能的基礎(chǔ)上靈活運用知識,發(fā)展數(shù)感!熬氁痪殹本o接例題,要求先通分,再比較分數(shù)的大小。這樣安排有兩個原因: 一是能鞏固通分的知識,形成通分技能,把分數(shù)加、減計算需要的基礎(chǔ)練扎實。二是這種策略、方法適用于比較分數(shù)大小的通常情況,用得比較多。練習(xí)十二第5~11題都配合例5的教學(xué),第5題寫出的三組分數(shù)比較大小各有特點,35和58通分或化成小數(shù)都很方便;16和49通分比較方便;114和1310如果寫成帶分數(shù),分別是2和真分數(shù)、1和真分數(shù)的合并。第6題根據(jù)分數(shù)的意義比較分子相同、分母不同的分數(shù)的大小,能進一步體驗分數(shù)的分子、分母及分數(shù)單位的含義,還能從中概括出分子相同,分母大的分數(shù)比較小的結(jié)論。第8題在使用常規(guī)比較方法的同時,留出了創(chuàng)新的空間。如比較23和78的大小,從13>18得到23<78;比較134與103的大小,如果把它們都化成帶分數(shù),就只要比較14與13的大小。教師對這些有創(chuàng)意的方法要給予鼓勵,但不作為基本方法要求全體學(xué)生都掌握。第9題通過8個分數(shù)與12比較大小,能夠發(fā)現(xiàn)一些規(guī)律: 如分子乘2的積仍小于分母的分數(shù)比12小,分母除以2的商小于分子的分數(shù)比12大……這對發(fā)展數(shù)感很有好處。
分數(shù)的基本性質(zhì)教案13
分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
根據(jù)分數(shù)的基本性質(zhì),我們能夠把任何一個分數(shù)變換成另一個分數(shù)單位的等值分數(shù)。也就是說,分數(shù)基本性質(zhì)解決了分數(shù)單位的換算問題。統(tǒng)一了分數(shù)單位,異分母的分數(shù)才能進行加減運算。
例如,+=+
。健2+
。健粒2+1)
=。
在分數(shù)的運算中,把異分母分數(shù)變成同分母的分數(shù)的過程,叫通分;通分是把較小的分數(shù)單位變換為較大的分數(shù)單位。在分數(shù)的運算中,有時也需要把較大的分數(shù)單位變換成較小的分數(shù)單位,這個過程叫約分。
例如,×=
。
。。
通分和約分的理論根據(jù)都是分數(shù)的基本性質(zhì)。
分數(shù)基本性質(zhì)還是分數(shù)集合分類的一個標準。根據(jù)分數(shù)基本性質(zhì),可以把分數(shù)集合中所有等值分數(shù)都歸為一類,于是分數(shù)集合就被分成無數(shù)個這樣的等值分數(shù)的類別。如,上述和屬于同一類,和屬于同一類。
在分數(shù)集合的每一個等值分數(shù)的類別中,都有且只有一個最簡分數(shù)。所謂最簡分數(shù),就是它的分子和分母除1以外再也沒有其他的公因數(shù)了。如,上述、都分別是它們所在的等值分數(shù)類別中的最簡分數(shù)。
在分數(shù)集合中,最簡分數(shù)就是每一個等值分數(shù)類別的代表。確定這一個代表的重要意義是,確保分數(shù)運算與自然數(shù)運算一樣,運算結(jié)果具有單值性(唯一性)。這就是為什么要對運算結(jié)果進行約分,直到最簡分數(shù)為止。
小數(shù)單位0.1、0.01、......分別與分數(shù)單位、、......是等價的,小數(shù)是特殊的分數(shù)。小數(shù)與分數(shù)可以互相轉(zhuǎn)化。
例如,把0.25化為分數(shù)。
方法1:(根據(jù)小數(shù)的意義)
0.25=0.01×25
。健25
。
。。
方法2:(把小數(shù)視為分母是1的分數(shù))
0.25=
=
。
。。
方法1和方法2中,每一步都是可逆的,所以如果把化為小數(shù),也有與上述對應(yīng)的兩種方法。此外,把分數(shù)化為小數(shù)還可以直接利用除法,即=1÷4=0.25。
在上述兩種方法中,分數(shù)的基本性質(zhì)都發(fā)揮了作用。
分數(shù)基本性質(zhì)與商不變規(guī)律,事實上是從不同的形式表示相同的規(guī)律。本質(zhì)相同而形式不同,主要是適應(yīng)不同的情境。所以,從商不變規(guī)律的重要性亦可反觀分數(shù)基本性質(zhì)的重要性。
遇到小數(shù)除法,根據(jù)商不變規(guī)律可以轉(zhuǎn)化為整數(shù)除法,從而以整數(shù)除法為基礎(chǔ)把把小數(shù)除法與整數(shù)除法統(tǒng)一起來。
例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;
或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.
如果把2.4÷0.4寫成分數(shù)形式,也未嘗不可,不過將出現(xiàn)被稱為“繁分數(shù)”的分數(shù)形式。把繁分數(shù)化為簡單分數(shù),也必須根據(jù)分數(shù)的基本性質(zhì)。
例如,=
。
。6.
有了“商不變規(guī)律”,在算式的等值變形中可以避免出現(xiàn)繁分數(shù)的形式,所以繁分數(shù)的概念很早以前就已經(jīng)不出現(xiàn)在小數(shù)數(shù)學(xué)的教科書中了;即使出現(xiàn)了“繁分數(shù)”,我們就把它當(dāng)作一般分數(shù)來對待,也不必專門為之增加一個新名稱。
當(dāng)溝通了分數(shù)、除法與比的本質(zhì)的`聯(lián)系后,我們可以想到,其實比也有一個與分數(shù)基本性質(zhì)等價的基本性質(zhì)。即比的前項與后項都乘或除以相同的數(shù)(0除外),比值不變。
根據(jù)比的這一基本性質(zhì),比可以進行等值變形。在比的實際應(yīng)用中,如果不掌握比的等值變形,就會寸步難行。不過,比的等值變形不能局限于比的化簡。在筆者《分數(shù)認識的三次深化與發(fā)展》中,已經(jīng)說明把按比分配轉(zhuǎn)化為分數(shù)問題來解決的時候,事實上要把整數(shù)比轉(zhuǎn)化為分數(shù)比的形式,而且這些表示部分與整體關(guān)系的分數(shù)的總和還必須等于1(即部分之和等于整體)。
下面再看兩個實例,進一步體會比的必要性。
例1一種混凝土是由水泥、沙子和石子混合成的,其中水泥與沙子的比是1︰1.5,沙子與石子的比是1︰。這種混凝土中水泥、沙子和石子的比是多少?
問題中兩個已知的比,分別表示混凝土中兩個成分的比,而且這兩個比的基準不一致。解決這個問題的關(guān)鍵是統(tǒng)一比的基準。因為這兩個比中都含有沙子的成分,所以選擇沙子為統(tǒng)一的基準,就能把兩個比統(tǒng)一起來。
解:水泥︰沙子=1︰1.5=10︰15=︰1;
沙子︰石子=1︰。
所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。
當(dāng)某種混合物的成分多于兩種,并要表示它各種成分之間的倍比關(guān)系時,比的表示形式就得天獨厚志顯示出它的優(yōu)越性。
例2(阿拉伯民間流傳的數(shù)學(xué)故事)有一位阿拉伯老人,生前養(yǎng)有11匹馬,他去世前立下遺囑:大兒子、二兒子、小兒子分別繼承遺產(chǎn)的、、。兒子們想來想去沒法分:他們所得的都不是整數(shù),即分別為、和,總不能把一匹馬割成幾塊來分吧?聰明的鄰居牽來了自己的1匹馬,對他們說:“你們看,現(xiàn)在有12匹馬了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,還剩一匹我照舊牽回家去!边@樣把分的問題解決了。
學(xué)習(xí)比的知識,我們都會變得和阿拉伯兄弟的那個鄰居一樣聰明。這個知識就是比的等值變形。
解:︰︰=(×12)︰(×12)︰(×12)
。6︰3︰2,
而且6+3+2=11。
所以,老大、老二、老三分別分得的馬分別是6匹、3匹和2匹。
這位阿拉伯鄰居一定是一名優(yōu)秀教師,他善于把上述抽象的演算過程直觀地表現(xiàn)出來。他牽來自己的一匹馬,湊成12匹馬,這個12恰是這三個分數(shù)分母的最小公倍數(shù),這個數(shù)也是把這三個分數(shù)的比化為整數(shù)比的關(guān)鍵所在。
綜上,可以看到分數(shù)基本性質(zhì)的重要地位和作用:
⒈是把分數(shù)從一個分數(shù)單位換算為另一個分數(shù)單位的基礎(chǔ);
⒉是分數(shù)的通分與約分的根據(jù),也是一些算式等值變形的重要途徑之一;
、呈欠謹(shù)集合被分成等值分數(shù)類別的分類標準,在每一個類別中都有且只有一個最簡分數(shù),使得分數(shù)運算的結(jié)果具有唯一性。
分數(shù)的基本性質(zhì)教案14
教學(xué)目的:
1、理解和掌握分數(shù)的基本性質(zhì)。
2、理解分數(shù)的基本性質(zhì)與商不變規(guī)律的關(guān)系。
3、培養(yǎng)教學(xué)內(nèi)容:小學(xué)數(shù)學(xué)第十冊,分數(shù)的基本性質(zhì)教材第107~108頁。學(xué)生觀察、比較,抽象、概括的能力及初步的邏輯推理能力。
4、應(yīng)用分數(shù)的基本性質(zhì)解決簡單實際問題。
5、正確認識、處理變與不變的的辨證關(guān)系。
教學(xué)重點:
掌握分數(shù)的基本性質(zhì)。
教學(xué)難點:
抽象概括分數(shù)的基本性質(zhì)。
教具學(xué)具準備:
多媒體及課件一套、學(xué)生每人三張同樣大小的紙條、彩筆。
教學(xué)步驟:
一、1、復(fù)習(xí)舊知
除法與分數(shù)之間有什么聯(lián)系?
被除數(shù)÷除數(shù)=被除數(shù)
除數(shù)
1)、你能用分數(shù)表示下面各題的商嗎?
1÷2=()3÷6=()5÷10=()4÷8=()
2)、根據(jù)400÷25=16在□里填數(shù):
(400×4)÷(25×4)=□
根據(jù)360÷90=4在□里填數(shù):
。360÷□)÷(90÷10)=4
。2)你是怎樣想的?(回憶除法中商不變性質(zhì))
商不變的性質(zhì)內(nèi)容是什么?
3)、引入:剛才我們復(fù)習(xí)了除法中商不變的性質(zhì),在分數(shù)中有沒有類似的性質(zhì)呢?
2、激趣引入:和尚分餅
從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦,不,是三個小和尚。小和尚們很喜歡吃老和尚做的餅,有一天,老和尚做了三個同樣大小的餅,還沒給,小和尚們就叫開了,小和尚說:“我要一塊!崩虾蜕卸挍]說,就把一塊餅平均分成二塊,取其中的一塊給了小和尚。高和尚說:“我要二塊!崩虾蜕杏职训诙䦃K餅平均分成四塊,取其中的兩塊給了高和尚,胖和尚搶著說:“我不要多了,我只要三塊!崩虾蜕杏职训谌龎K餅平均分成六塊,取其中的三塊給了胖和尚。老和尚一一滿滿足了小和尚們的要求,同學(xué)們,誰會用一個數(shù)來表示三個和尚分得的餅數(shù)?板書:1/22/43/6
你們猜猜哪個和尚分的餅多?
這幾個分數(shù)真的相等嗎?讓我們做個實驗來證明。
3、操作感知:
。1)請同學(xué)們拿出三張大小相同的長方形紙條。
通過實驗、觀察、分析、討論
、侔训谝粡埣垪l平均分成2份,其中1份涂上顏色并用分數(shù)表示出來;
、诎训诙䦶埣垪l平均分成4份,其中2份涂上顏色并用分數(shù)表示出來;
、郯训谌龔埣垪l平均分成6份,其中3份涂上顏色并用分數(shù)表示出來
然后看涂上顏色的部分是不是一樣大。這說明了什么?
引導(dǎo):聰明的老和尚是用什么辦法來既滿足小和尚們的要求,又分得那么公平的呢?同學(xué)們想知道嗎?學(xué)習(xí)了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)
這三個分數(shù)它們之間有什么變化規(guī)律嗎?下面我們就來研究這個變化規(guī)律。
二、比較歸納揭示規(guī)律
比較這三個分數(shù)分子和分母,它們各是按照什么規(guī)律變化的?:
1、說說這三個分數(shù)的意義。
2、總結(jié)規(guī)律:
。1)從左往右觀察:
a、觀察手中第一、第二張紙條。
發(fā)現(xiàn):1/2是把單位“1”平均分成2份,表示其中的1份。如果把分的份數(shù)和表示的.份數(shù)都乘2,就得到2/4。就是1/2=1×2/2×2=2/4
b、再讓學(xué)生說說從1/2到3/6,分數(shù)的分子和分母又是按什么規(guī)律變化的?
板書:1/2=1×3/2×3=3/6
c、根據(jù)上面的分析,你能得出什么結(jié)論?引導(dǎo)學(xué)生說出:分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。
。2)引導(dǎo)學(xué)生觀察、討論:
從右往左看,3/6到1/2,2/4到1/2,分數(shù)的分子和分母是按什么規(guī)律變化的?從中你能得出什么結(jié)論?
學(xué)生邊回答邊板書:3/6=3÷3/6÷3=1/2
2/4=2÷2/4÷2=1/2
并得出結(jié)論:分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。
3、抽象概括歸納性質(zhì)
。1)引導(dǎo)學(xué)生把剛才出示的兩條規(guī)律合并成一條規(guī)律。指出這就是“分數(shù)的基本性質(zhì)”。
。2)齊讀書上的結(jié)論,比一比少了些什么?討論:為什么性質(zhì)中要規(guī)定“零除外”齊讀。
分母不能是0,所以分數(shù)的分子、分母不能同時乘以0;又因為除法里,零不能作除數(shù),所以分數(shù)的分子、分母也不能同時除以0。
分數(shù)的基本性質(zhì)教案15
教學(xué)內(nèi)容:人教版五年級數(shù)學(xué)下冊57頁內(nèi)容。
教學(xué)目標:
知識與能力:使學(xué)生理解和掌握分數(shù)的基本性質(zhì),并能應(yīng)用這一規(guī)律解決簡單的實際問題。
過程與方法:能在觀察、比較、猜想、驗證等學(xué)習(xí)活動的過程中,有條理、有根據(jù)地思考、探究問題,培養(yǎng)學(xué)生分析和抽象概括的能力。
情感態(tài)度價值觀:體驗數(shù)學(xué)驗證的思想,培養(yǎng)樂于探究的學(xué)習(xí)態(tài)度。
教學(xué)重點:使學(xué)生理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點:運用分數(shù)的基本性質(zhì)解決相關(guān)的問題。
教學(xué)準備:多媒體課件、正方形紙、直尺、彩筆
教學(xué)過程:
一、鋪墊孕伏,溫故遷移
1.比一比:看誰算得又對又快。
2.說一說:商不變的性質(zhì)是什么?
3.想一想:分數(shù)與除法有怎樣的關(guān)系?
4.猜一猜:除法中有商不變的規(guī)律,分數(shù)中是否具有類似的規(guī)律?
二、設(shè)疑激趣,探究新知
。ㄒ唬┕适录と,引出分數(shù)。
說出自己從故事中聽到的分數(shù)。
。ǘ┬〗M合作,直觀感知。
1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。
2.畫一畫:畫出折痕所在的直線。
3.涂一涂:
。1)給平均分成2份的正方形紙的其中的1份涂上顏色。
。2)給平均分成4份的正方形紙的其中的`2份涂上顏色。
。3)給平均分成8份的正方形紙的其中的4份涂上顏色。
4.比一比:比較3張正方形紙涂色部分的大小。
5.議一議:和同伴說說自己的想法。
。ǘ┯^察比較,探究規(guī)律。
1.這三個分數(shù)的分子、分母都不同,分數(shù)的大小卻相等。你能找出它們之間的變化規(guī)律嗎?請同學(xué)們四人一組,討論這個問題。
2.匯報交流。
3.啟發(fā)點撥。
通過從左往右觀察、比較、分析,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生小結(jié)得出:分數(shù)的分子、分母同時乘相同的數(shù),分數(shù)的大小不變。
那么,從右往左看呢?
讓學(xué)生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。
4.歸納小結(jié):引導(dǎo)學(xué)生概括出分數(shù)的基本性質(zhì)。
5.啟發(fā)思考:這里的“相同的數(shù)”可以是任何數(shù)嗎?(補充板書:0除外),你能舉例說明嗎?
。ㄈ┆毩L試,運用規(guī)律。
1.學(xué)生獨立思考,完成例2。
2.反饋交流,訂正點撥。
3.小結(jié):我們可以運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小不變的分數(shù)。
三、達標檢測,內(nèi)化提升(見《達標測試題》)
四、總結(jié)收獲,評價激勵
這節(jié)課你有什么收獲?你對自己的哪些表現(xiàn)比較滿意?
板書設(shè)計:
分數(shù)的基本性質(zhì)
例1:
分數(shù)的分子、分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
例2:
【分數(shù)的基本性質(zhì)教案】相關(guān)文章:
分數(shù)的基本性質(zhì)教案07-21
分數(shù)的基本性質(zhì)05-02
《分數(shù)的基本性質(zhì)》05-02
分數(shù)的基本性質(zhì)(一)05-02
分數(shù)的基本性質(zhì)(二)05-02