- 相關(guān)推薦
高中數(shù)學《任意角的三角函數(shù)》說課稿模板
各位同仁,各位專家:
我說課的課題是<<任意角的三角函數(shù)>>,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1.2節(jié)
先對教材進行分析
教學內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號.
地位和作用: 任意角的三角函數(shù)是本章教學內(nèi)容的基本概念對三角內(nèi)容的整體學習至關(guān)重要.同時它又為平面向量、解析幾何等內(nèi)容的學習作必要的準備,通過這部分內(nèi)容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念,
高中數(shù)學《任意角的三角函數(shù)》說課稿模板
。所以這個內(nèi)容要認真探討教材,精心設(shè)計過程.教學重點:任意角三角函數(shù)的定義
教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉(zhuǎn)換以及坐標定義的合理性的理解;
學情分析:
學生已經(jīng)掌握的內(nèi)容,學生學習能力
1.初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2.我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。
3.在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內(nèi)容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
(1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,
能力目標:
(1)理解并掌握任意角的三角函數(shù)的定義;
(2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);
(3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力.
德育目標:
(1)學習轉(zhuǎn)化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設(shè)計教學方法
教法學法:溫故知新,逐步拓展
(1)在復習初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
(1)提高直觀性增強趣味性.
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數(shù)的定義
過度到直角坐標系中銳角三角函數(shù)的定義
再發(fā)展到直角坐標系中任意角三角函數(shù)的定義
給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義.
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系,
資料共享平臺
《高中數(shù)學《任意角的三角函數(shù)》說課稿模板》(http://m.clearvueentertainment.com)。我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?
引導學生發(fā)現(xiàn)B的坐標和邊長的關(guān)系.進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數(shù)的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān).
精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義
例1已知角A 的終邊經(jīng)過P(2,-3),求角A的三個三角函數(shù)值
(此題由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值
結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),
提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?
從而引出函數(shù)極其定義域
由學生分析討論,得出結(jié)論
知識點二:三個三角函數(shù)的定義域
同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)
例題變式2, 已知角A 的終邊經(jīng)過P(-2a,-3a)( a不為0),求角A的三個三角函數(shù)值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關(guān),從而導出第三個知識點
知識點三:三角函數(shù)值的正負與角所在象限的關(guān)系
由學生推出結(jié)論,教師總結(jié)符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)
拓展,如果不限制A的象限呢,可以留作課外探討
小結(jié)回顧課堂內(nèi)容
課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解
課堂作業(yè)P16 1,2,4
(學生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(yè)(有利于全體學生的發(fā)展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書設(shè)計(見PPT)
【高中數(shù)學《任意角的三角函數(shù)》說課稿】相關(guān)文章:
高中數(shù)學教學-三角函數(shù)的性質(zhì)及應(yīng)用09-09
高中數(shù)學教學-三角函數(shù)的最值及綜合應(yīng)用08-15
《角的認識》說課稿07-01
《角的初步認識》說課稿10-21
角的初步認識說課稿07-02
《角的初步認識》說課稿09-28
高中數(shù)學《直線的斜率》說課稿10-03
高中數(shù)學標軸的平移說課稿10-11